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Abstract— Among the major models developed for soil mois-
ture retrieval, the empirical model developed by Dubois et al.
in 1995 proves to be a good choice, because of its accuracy
and simplicity of implementation. The model provides quite good
results for the estimation in bare soil areas. However, it does not
explicitly incorporate vegetation backscatter effects and does not
provide good results for vegetated areas with a cross-polarization
ratio greater than -11dB. A modified empirical model is developed
to address this concern. The water-cloud model is used to
introduce vegetation effects into the VV backscatter coefficient,
which is further used in the inversion model. The modified model
is applied to the Washita 1994 SIR-C data and a correlation of
0.81 is obtained between the ground based measurements and
the soil moisture estimated from radar data.

I. INTRODUCTION

The moisture content of the soil plays an important role in
the estimation and modelling of various large-scale ecological
processes such as climate change, agriculture, evaporation,
transpiration, flood forecasting, surface run-off and ground
water replenishment. Several approaches for soil moisture re-
trieval for both active and passive remote sensing instruments
have been developed over the last two decades. Research in
this area still continues, as drawbacks have been present in
all the models proposed. One of the challenges presented by
the originally developed models, is their ineffectiveness in
accurately estimating the soil moisture content for vegetated
regions.

This paper addresses the aforementioned concern and pro-
poses to introduce the vegetation effects into an existing
empirical model, developed by Dubois et al. [1]. Generally,
an empirical model is developed to express the backscattering
coefficients in terms of the surface parameters, based on the
knowledge of the scattering behavior in limiting cases and on
experimental observations.

II. EXISTING MODELS FOR SOIL MOISTURE RETRIEVAL

Developing direct models by simulating the backscattering
coefficients in terms of the soil attributes such as the dielectric
constant and the surface roughness, for an area with known
characteristics, is one of the common approaches used to
develop models for soil moisture retrieval. These direct models
are subsequently used in the inverse mode to estimate the
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surface parameters, given the radar measurements. In the
following sections we review the approaches which have been
proposed in the recent years. The models have been classified
into two groups: soil moisture retrieval in bare-soil and in
vegetated areas.

A. Models for soil moisture retrieval in bare areas

Models for soil moisture estimation have mostly been
developed based on radiometer or SAR measurements. These
models were further validated for their performance using one
of the two types of data or both.

Among the models used for soil moisture retrieval with
polarimetric radar data, the first was an empirical model
proposed by Oh et al. [2]. In this model, the co-polarized
and cross-polarized ratios of the backscattering coefficients
are expressed in terms of the surface parameters. The model
was developed from and tested on radiometer data; as a result
its estimation accuracy may not be good when SAR data is
used. This model was followed by another empirical model
suggested by Dubois et al. [1] which employs the co-polarized
backscatter only. Radiometric measurements were used to
develop this model, with its performance being validated on
both radiometer and SAR data. The Shi Model [3] is based
on the Integral Equation Method (IEM) [4] and was tested
for its performance only on SAR data. The algorithm and
its inverse are complex and difficult to implement due to the
requirement of several parameters in the computations. It also
requires the knowledge of the surface roughness to estimate
the soil moisture and vice versa.

All the models mentioned above provide good results in
retrieving the soil moisture in areas/sites with bare soil or short
vegetation. They, however, produce erroneous results for areas
with larger amounts of vegetation.

B. Models for soil moisture retrieval in vegetated areas

In the recent years, many models have been developed for
the purpose of soil moisture estimation in vegetated areas.
One of the first approaches to be suggested was by Jackson
et al. [5] where a quantitative technique for isolating the
effect of vegetation was developed using the field normalized
brightness temperature. This required the prior knowledge of
the brightness temperatures for both soil and vegetation and
the technique was applied to radiometer data. Many other
models, such as in [6], [7], are based on regression coefficients



generated by observations over a specific test site. As a result,
they may not be suitable for estimation in other test sites.

Certain models were developed by introducing vegetation
effects into the existing models. In [8], the vegetation effect
is modelled using the brightness temperature of a weakly
scattering layer above a semi-definite medium, as given in
[9], in conjunction with a vegetation model based on discrete
scatter random media techniques. The use of this particular
vegetation model requires the knowledge of several vegetation
parameters which tends to decrease the simplicity of imple-
mentation. [10] proposes an algorithm to introduce vegetation
effects into the Oh Model. However, this model tends to have
the same limitations as the original model.

In [11] vegetation correction has been successfully incorpo-
rated into the Shi Model. Here, the water-cloud model along
with a vegetation correlation function is employed to include
the vegetation effects. Though, very good results are obtained;
this approach retains the complexity of the Shi Model.

Among all the suggested approaches, the empirical model
of Dubois et al. [1] tends to be a better choice since it
gives good results for both radiometer and SAR data. The
backscatter measured by a radar and the emission measured
by a radiometer are both very sensitive to the moisture content.
However, the soil moisture affects both types of measurements
in different ways [12]. As a result, the Dubois model is
applicable to different forms of data measured by a variety
of sensors and tends to be quite accurate in most cases. The
algorithm also seems to be accurate for rough surfaces [13].
Furthermore, the Dubois Model requires fewer measurable
parameters for the estimation, presenting lesser complexity in
the instrument design and enabling a simpler implementation
as compared to most models [2], [3]. Unlike the Shi Model,
this empirical model does not require the knowledge of one
surface parameter to determine the other. However, like all
the models discussed in Section II-A, the Dubois Model also
produces good estimation results in areas with bare soil or
short vegetation i.e., regions with a cross polarization ratio
of less than -11dB, while errors increase of areas with more
vegetation.

III. PROPOSED MODELLING APPROACH

In order to circumvent the problems associated with dif-
ferent models, our goal is to develop a simple yet effective
model, based on the Dubois Model, which incorporates the
vegetation correction and is as accurate as the models that
already include the vegetation effects.

The Water-Cloud Model presents a simple approach to
include the contribution of the vegetation as well as the soil
in the backscattering coefficient [9], [14]. According to the
model, the total power scattered at a co-polarized channel pp,
σo

pp, is the incoherent sum of contribution of the vegetation,
σo

veg and that of the underlying soil, σo
soil, which is attenuated

by the vegetation layer. For a given incidence angle, the co-
polarized backscatter coefficient can be given by the general
form:

σo
pp = σo

veg + σo
veg+soil + τ2 σo

soil (1)

where τ2 is the two-way vegetation transmissivity. The second
term in (1) represents the interaction between the vegetation
and underlying soil. Since the interaction term is not a domi-
nant term in the co-polarized returns [15], it can be neglected.
Therefore, the water-cloud model uses:

σo
pp = σo

veg + τ2 σo
soil (2)

with
τ2 = e(−2bWc sec φ) (3)

and
σo

veg = Amv cos θ(1 − τ2) (4)

where Wc is the vegetation water content (kg/m2), θ is the
the incidence angle and φ is the nadir angle. A and b are
parameters that depend on the type of vegetation; A represents
the vegetation scattering, b is the attenuation parameter. The
type and geometrical structure of the canopy as well as the
polarization and wavelength of the sensor are accounted for
through these parameters. Both A and b are determined by fit-
ting models against experimental data [16], [17]. It is expected
that in future missions, such as the HYDROS mission [18],
it will be possible to estimate these vegetation parameters
remotely rather than using ground based measurements.

The orientation and geometry of vegetation are key fac-
tors in vegetation backscatter. It is possible that when two
canopies of different heights are located at the same range,
the backscatter from one is affected by the other and vice
versa, leading to an over-estimation of the backscatter by the
water-cloud model. Bindlish et al. [11] propose an exponential
vegetation correlation function to model this geometric effect
of the vegetation spacing within the water-cloud model, by
introducing the concept of vegetation correlation length:

σo∗
veg = σo

veg (1 − e−α) (5)

where σo∗
veg is the corrected vegetation contribution and α is a

function of the vegetation correlation length and the average
distance between the discrete vegetation canopies within a
pixel [17]. Thus, (2) is modified to include the corrected
vegetation contribution:

σo
pp = σo∗

veg + τ2 σo
soil (6)

A Least Mean Squares (LMS) regression analysis provides
a linear correlation function between the measured backscatter
and the soil moisture content estimated by the original Dubois
Model. This linear function is utilized to obtain the backscatter
contribution of the underlying soil, σo

soil.
Consequently, both σo∗

veg and σo
soil are used in (6) to compute

the total backscatter, which is then used in the existing
inversion model to estimate the soil moisture. The inversion
model, however, computes the dielectric constant rather than
the volumetric soil moisture. The empirical model proposed
in [19] relates mv to the dielectric constant as well as the soil
texture, using which mv can be determined.

It is important to note that, while the HH and VV backscat-
tering coefficients are used in the inversion model, the HV



backscatter is used to obtain the cross-polarization ratio,
σo

hv/σo
vv, which is used in determining the extent of vegetation

in a particular area/site. A ratio greater than -11dB indicates
the presence of a larger amount of vegetation [1] and the
necessity of the modified model.

IV. IMPLEMENTATION

Based on the methodology discussed in Section III, the
vegetation effects are introduced into the empirical model
using the water-cloud model, in conjunction with the vege-
tation correlation function suggested in [11]. The vegetation
parameters will, however, depend on the type and geometrical
structure of the vegetation in a particular site/scene.

The modified model is applied to C-Band, SIR-C images of
the Little Washita Watershed acquired in April 1994, during
the Washita’94 campaign. These data sets are provided with
good in-situ ground measurements for a number of sites
with different forms of vegetation [22]. Both the ground and
remotely sensed data were measured under different moisture
conditions over a duration of 8 days between 11–18 April. The
sites which have been used for the proposed model are given
in Table I along with their type of land cover and vegetation
parameters. The SIR-C data acquisition parameters of each
data take such as the incidence and nadir angles are available
in [20].

As an initial step, the linear regression analysis is performed
on the measured VV backscatter, σo

vv, and the soil moisture
content, mf , estimated by the existing Dubois Model. This
causes σo

vv to be expressed as a linear function of the mf

values. Fig.1 shows the linear relationship and the equation
thus obtained:

σo
vv = 0.0041 mf − 13.39 dB (7)

We initially introduced the vegetation effects in both the HH
and VV backscattering coefficients. Based on our experimental
observations, this type of implementation did not seem to
provide better results. [21] claims that if the vegetation cover
in a given area is uniform, the vegetation effects will be more
dominant in the VV backscatter. Consequently, we incorporate
the vegetation correction only in the VV polarized backscatter.

TABLE I

Site Characterization for Washita’ 94 April Mission, Source: [17], [22]

Site Land Cover Wc (kg/m2) A b α

11 Alfalfa 1.798 0.0012 0.091 2.12

12 Bare Soil 0 0 0 0

13 Winter Wheat 1.386 0.0018 0.138 10.6

14 Rangeland 0.096 0.0009 0.032 1.87

21 Rangeland 0.078 0.0009 0.032 1.87

22 Rangeland 0.107 0.0009 0.032 1.87

23 Rangeland 0.065 0.0009 0.032 1.87

53 Winter Wheat 0.797 0.0018 0.138 10.6

54 Pasture 0.086 0.0014 0.084 1.29

55 Winter Wheat 0.817 0.0018 0.138 10.6
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Fig. 1. Measured VV backscattering coefficient as a function of mf ,for all
sites and the entire duration of the Washita’94 program

The proposed algorithm can be summarized as follows:

1) The average σo
hh and σo

vv are computed for the given site
and used in equations of the original inversion model
[1] to obtain an initial estimate of the volumetric soil
moisture, mv .

2) The soil moisture content, mf , is computed from the
volumetric soil moisture as follows:

mf = 100 × mv

FCv
(8)

where FCv is the field capacity, as in [9].
3) The soil moisture content is then used in the linear

correlation equation (7) to determine σo
soil.

4) Using the vegetation parameters, A, b and α for the
given site in (3), (4) and (5), σo∗

veg is obtained.
5) The σo

soil and σo∗
veg determined in Steps 3 & 4, are further

employed in (6) to provide the total VV backscatter, σo
vv.

6) Finally, the full inversion model is run again using σo
vv

computed in Step 5 and σo
hh from Step 1, to obtain the

modified values of mv .

V. RESULTS

The proposed algorithm is implemented on the C-band
Washita’94 data to estimate the soil moisture content for the
different sites given in Table I.

Figs. 2 and 3 show the comparison between the measured
and retrieved values of volumetric soil moisture for the orig-
inal empirical model and for the proposed algorithm with
vegetation correction, respectively. The correlation has been
measured between the estimated soil moisture values and the
ground measurements. If there were no errors, the correlation
would be unity (R = 1), and the estimated values would all
lie on the 45◦ dashed line. As compared to a correlation of
R = 0.58 obtained for the existing model, the introduction
of the vegetation effects into the empirical model results
in a correlation coefficient of R = 0.81. This indicates a
considerable increase in the estimation accuracy in vegetated
areas for the empirical model.
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Fig. 2. Scatter plot of measured and estimated volumetric soil moisture for
the sites given in Table I for 5 dates in the Washita 94 experiment using the
original empirical model without vegetation correction
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Fig. 3. Scatter plot of measured and estimated volumetric soil moisture for
the sites given in Table I for 5 dates in the Washita 94 experiment using the
modified empirical model

The proposed model, however, does not yet provide better
results as compared to the approach based on the Shi Model
in [17] discussed in Section II-B. For the same data set, a
correlation of R = 0.87 is obtained using this algorithm.

VI. CONCLUSIONS

A modified empirical model for soil moisture retrieval in
vegetated areas is presented. The proposed algorithm incor-
porates vegetation effects into the original empirical model of
Dubois et al. and the performance of this model is observed
for a well documented SIR-C data set.

An analysis of the results indicates an improvement in the
soil moisture estimation from polarimetric radar data when a
vegetation term is included in the Dubois Model. We have,
however, only partially achieved our objective and hope to
obtain better results by further refinement in the model.
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