
Classification of Polarimetric SAR Data Using
Spectral Graph Partitioning

Kaan Ersahin, Ian G. Cumming and Matthew J. Yedlin
Dept. of Electrical and Computer Engineering

The University of British Columbia
Vancouver, BC, CANADA V6T 1Z4

Email: kaane@ece.ubc.ca

Abstract— A new approach for classification of Polarimetric
Synthetic Aperture Radar (POLSAR) data is proposed using
segmentation that is formulated as a graph partitioning problem.
This work is motivated by the fact that human experts are very
good at visual interpretation and segmentation of POLSAR data,
which is often challenging for automated analysis techniques.
Spectral graph partitioning, a framework that has recently
emerged in computer vision for solving grouping problems with
perceptually plausible results, is used with modifications neces-
sary to accommodate POLSAR data. Using the similarity of edge-
aligned patch histograms and spatial proximity, classification
performance that is superior to the Wishart classifier is achieved.
This approach also provides a way to combine region-based and
contour-based segmentation techniques, as it can accommodate
different representations of polarimetric data as well as other
data sources (e.g., optical imagery).

I. INTRODUCTION

In the last two decades, Synthetic Aperture Radar (SAR)
polarimetry has shown promise through airborne research
campaigns, which lead to the planning of space-borne missions
that offer fully polarimetric modes (i.e., ALOS-PALSAR,
TerraSAR-X and RADARSAT-2). Once these space-borne
systems become operational, (1) large volumes of data will be
available on a daily basis, whose manual interpretation will
not be feasible and (2) many end-users that have limited or
no expertise will start using these data. Therefore, automated
analysis procedures are required, which typically involve the
classification task. However, SAR data classification is known
to be challenging due to speckle, that results in large variation
of the backscatter across neighboring pixels within the same
distributed target (e.g., a field of wheat). Even after speckle
reduction, a considerable amount of within-class variation
remains. Thus, pixel-based classification schemes are often
unreliable.

In radar polarimetry literature, there have been attempts
to improve the classification accuracy through different rep-
resentations, many features were suggested as candidates to
discriminate between targets. A widely accepted technique
uses the maximum likelihood classification based on the
complex Wishart distribution (a.k.a. Wishart classifier) in an
iterative scheme [1], [2]. However these techniques are pixel-
based and therefore are not able to capture and utilize spatial
information in the image data.

To achieve improved classification performance, a segmen-
tation step could be introduced to aid the task by forming

groups of pixels that represent homogeneous regions. How-
ever, segmentation of SAR image data is challenging for
automated systems, while being relatively easy for human
experts. This is generally the case for many problems in
computer vision, where the ultimate goal is to achieve the
performance of the human vision system. This may only
become possible through a good understanding of how humans
handle the task. Therefore, it is important to recognize that
for humans, an image represents more than a collection of
pixels: it is a meaningful organization of objects or patterns.
In late 1930s, Gestalt psychologists have studied this important
phenomenon, perceptual organization, and reported several
factors that contribute to this process. These factors (e.g.,
similarity, proximity, continuity, closure) are known as cues
in psychology literature.

Over the last two decades, research in computer vision has
sought methodologies that can utilize these ideas and in the
last few years a promising technique for grouping applications,
spectral graph partitioning, has emerged [3], [4]. This approach
has been shown to perform well on image segmentation prob-
lems as well as recovering complicated manifold structures
in the feature space. Spectral graph partitioning is a pair-wise
grouping technique. It enables the combination of several cues
and allows flexibility in the definition of affinity functions that
measure the similarity between pairs. Utilizing multiple cues
that contribute to perceptual grouping process (i.e., similarity
in brightness, color or texture, proximity, and contour conti-
nuity) results in segmentations that are perceptually plausible
(i.e., consistent with what humans perceive).

Our proposed scheme uses the spectral graph partitioning
framework with modifications that were found necessary for
classification of Polarimetric SAR data. Preliminary results
obtained using the similarity of patch-based features and
proximity are found to be superior to the Wishart classifier.
Detailed analysis of different aspects of the proposed scheme
and validation for multiple data sets is underway.

II. SPECTRAL GRAPH PARTITIONING

Both clustering and image segmentation can be formulated
as a graph partitioning problem, by representing a set of
points in an arbitrary feature space using an undirected graph
G = {V,E}, where V and E represent the nodes and the
edges (i.e., connections) respectively. Each node on the graph



corresponds to a data point in feature space and the edge
between two nodes, u and υ, is associated with a weight,
ω(u, υ), that indicates the similarity of that pair. In general, G
is a fully connected graph (i.e., each node is connected to all
the other nodes). For partitioning such a graph, it is intuitive
to minimize the similarity across candidate partitions V1 and
V2, which can be quantified by a cut (i.e., sum of weights
between the nodes in V1 and the nodes in V2).

cut(V1, V2) =
∑

u∈V1,υ∈V2

ω(u, υ) (1)

However, minimizing this cost function favors partitions with
single nodes. To avoid this bias, Shi and Malik [3] suggested
to minimize the Normalized Cut (NCut) defined as follows:

NCut(V1, V2) =
cut(V1, V2)

assoc(V1, V )
+

cut(V1, V2)
assoc(V2, V )

(2)

where assoc(V1, V ) is the sum of the weights from the nodes
in V1 to all the nodes in the graph, V . An optimal partitioning
can be found by minimizing this cost function, which can be
shown to be equivalent to solving the following:

y = argminy

yT (D − W ) y

yT D y
(3)

where y = {a, b}N is a binary indicator vector specifying the
group identity for each point (i.e., yi = a if node i belongs to
V1 and yj = b if node j belongs to V2). N is the number
of nodes, W is the N × N matrix whose entries are the
weights, ω(i, j), and D is a diagonal matrix, where its diagonal
elements are the sum of the rows of W .

Note that the expression in (3) is the Rayleigh quotient,
and if the condition on y is relaxed so that it can take on real
values, the solution can be obtained by solving the generalized
eigenvalue system,

(D − W )y = λD y (4)

where D −W is known as the graph Laplacian. Using z =
D

1
2 y , (4) can be rewritten as:

D− 1
2 (D − W )D− 1

2 z = λ z (5)

where D− 1
2 (D−W )D− 1

2 is the normalized graph Laplacian,
L, which is symmetric positive semi-definite (p.s.d.). The
eigenvector that corresponds to the second smallest eigenvalue
is the real valued solution for (3). Therefore, this eigenvector
can be used to bi-partition the graph as suggested in [3]. Also
note that the second smallest eigenvalue of L corresponds
to the second largest eigenvalue of I − L or D− 1

2 W D− 1
2 ,

where I is the identity matrix.

A. An algorithm for k-way partitioning: Spectral Clustering

Based on the approach described in the previous section, the
spectral clustering algorithm given by Ng et al. [4] provides
k-way partitioning. A slightly different notation is used, where
the matrix W is now called the affinity matrix, A, and I −L
is replaced with L, the normalized affinity matrix. Therefore
the eigenvectors that correspond to the largest eigenvalues are

used instead of the smallest ones. For a set of points, S =
{s1, ..., sN} in R�, and number of clusters, k, the algorithm
involves the following steps:

1) Form the affinity matrix A ∈ RN×N whose entries are
defined by:

Aij =

{
exp

{−d2(si,sj)
2σ2

}
, if i �= j

0, if i = j
(6)

where σ is the scaling parameter (i.e, kernel bandwidth)
and d(si, sj) is the Euclidian distance and represents the
dissimilarity between points si and sj .

2) Construct the normalized affinity matrix, L using,

L = D− 1
2 AD− 1

2 (7)

where D is a diagonal matrix with Dii =
∑N

j=1 Aij .

3) Form matrix X = [x1 x2 .. xn .. xk]∈ RN×k, whose
columns xn are the eigenvectors that correspond to the
k largest eigenvalues of matrix L.

4) Normalize the rows of X and form matrix Y
(i.e., Yij = Xij/(

∑
j X2

ij)
− 1

2 )

5) Cluster rows of Y using the K-means algorithm

Since pairwise similarities are used to determine the groups,
it becomes possible to recover complicated manifold structures
in the feature space, which can not be achieved by central
grouping techniques (e.g., k-means or EM) that require each
group member to be close to a prototype (i.e., the cluster
center). A synthetic data set that contains concentric circles in
a two-dimensional feature space is often used to demonstrate
the ability of spectral clustering to overcome the limitation of
those techniques and correctly solve the perceptual grouping
problem (i.e., group points as two circles like humans do).
However, the scaling parameter, σ, plays an important role
in obtaining successful results. The potential problems due
to manual parameter tuning can be circumvented by using
local scaling as suggested in [5]. This procedure automates the
parameter selection and provides good results by adaptively
choosing a scaling parameter σi for each point si. The affinity
function in Eq. 6 is modified as follows:

Âij = exp
(−d2(si, sj)

2σi σj

)
(8)

and σi, the local scaling parameter for point si is given by

σi = mediansn∈N(si){ d(si, sn) } (9)

where N(si) is the set of nLS nearest neighbors of si in the
feature space.

B. Computational Complexity and Fast Approximate Solutions

The spectral graph partitioning framework involves solving
the eigenvalue problem for the normalized affinity matrix, of
size N ×N , where N is the number of points (or pixels
for image segmentation problems). In the case of a fully



connected graph, the entries of this matrix are potentially
non-zero, and the time complexity of solving the eigenvalue
problem is O(N3). The computational cost of this dense
solution quickly becomes prohibitive for images of useful size.
However the following techniques can decrease the time and
space complexity at the expense of an approximate solution:

1) Iterative methods: Spectral clustering requires only the
first few eigenvectors. Therefore, an iterative method (e.g.,
Lanczos) can be used to obtain the solution with the time
complexity of O(N2);

2) Sparse representation: For image segmentation prob-
lems, the number of connections from each pixel can be set to
a small constant, so that the graph has very few connections in
comparison to the fully connected case and the affinity matrix
is sparse. This will reduce the complexity to O(N);

3) Nyström Method: The Nyström extension is a technique
to find numerical approximations for eigenvalue problems.
In the context of solving the eigenvalue problem for the
normalized affinity matrix, this turns out to be very useful. The
eigenvectors that are computed using a small set of sample
points can be extrapolated to obtain the eigenvectors of the
matrix. The details of this method with application to spectral
clustering can be found in [6].

III. PROPOSED SCHEME FOR CLASSIFICATION OF

POLARIMETRIC SAR DATA

Our proposed scheme for classification of POLSAR data is
based on the spectral clustering algorithm:

• Perform multi-looking on single look complex (SLC) data
(i.e., for Convair-580 data set, use 10 azimuth looks)

• Apply a polarimetric SAR speckle filter, as suggested in
Lee et al. [7] (i.e., use window size of 7 × 7)

• Apply the spectral clustering algorithm with the following
modifications:

1) Form an affinity matrix for each data channel (i.e.,
|HH|2, |HV |2, |V V |2, ρHHVV and φHHVV) indepen-
dently using the following weights:

W b
ij = exp

(−χ2(hi, hj)
2σi σj

)
(10)

where χ2(hi, hj) represents the dissimilarity between
the histograms hi and hj that are associated with pixels
si and sj :

χ2(hi, hj) =
1
2

K∑
k=1

[hi(k) − hj(k)]2

hi(k) + hj(k)
(11)

For a pixel of interest si, the histogram hi is computed
from an edge-aligned window (patch), where the win-
dow mask is chosen using the procedure described in
Lee et al. [7] for polarimetric SAR speckle filtering.
The definition of the local scaling parameter, σi is also
modified as follows:

σi = medianhn∈N(hi)

{
χ2(hi, hn)

}
(12)

2) Define an affinity matrix that represents the proximity
of pixel pairs in the image domain using the following
scheme:

WP
ij =

{
1 − ||li−lj ||2

r , if ||li − lj ||2 < r
0, if ||li − lj ||2 ≥ r

(13)

where r is the maximum distance allowed between
pairs to have a non-zero affinity (i.e., longest pairwise
connection allowed in the graph) and li represents the
location of pixel i in the image plane.

3) Form the combined affinity matrix, W tot
ij , by element-

wise multiplication of the affinity matrices as follows:

W tot
ij = WP

ij ×
Nb∏
b=1

W b
ij (14)

where Nb is the number of channels.
4) Perform Steps 2 to 5 in the spectral clustering algorithm

as in Section II-A (i.e., form matrix D and L, calculate
the first k eigenvectors of L, form matrix X , normalize
its rows and cluster using the K-means algorithm).

IV. RESULTS AND DISCUSSION

The results presented in this section are obtained using a
subset of the Westham Island scene shown in Figure 1. This
C-band data set was acquired on 30 September 2004 by the
Canadian Convair-580. This scene covers the agricultural fields
on Westham Island, which is located in the south of Vancouver,
Canada. The area contains fields of corn, potatoes, variety of
berries, hay, bare soil, some barley, wheat, pumpkin, turnip,
red cabbage, broccoli, and grass. However, detailed ground
truth was only collected at a limited number of locations and
the rest is considered unknown. Therefore we have chosen the
region of interest (ROI) shown in Figure 1(b), where most of
the fields have ground truth information given in Figure 1(d).

(a)

(b) (c)

(d) (e)

Fig. 1. Westham Island Scene acquired by the Convair-580 c©CSA (a) RGB
color composite [HH-HV-VV] (b) Region of Interest (ROI) (c) ROI after
speckle filtering (d) Ground Truth (e) Wishart classifier result [63.1%]

A number of results have been obtained for different values
of the patch size (d = 11, 15 and 21) and the neighborhood



TABLE I

OVERALL CLASSIFICATION ACCURACY USING THE PROPOSED SCHEME

r nLS d = 11 d = 15 d = 21

N/A 5 71 69 72
25 71 71 73

45 5 75 72 74
25 75 75 73

size (nLS = 5 and 25). Also two cases for proximity are
considered: (1) r = N/A (or r = ∞), i.e., proximity does not
have any affect on the total affinity matrix (or WP

ij = 1), and
(2) r = 45 is used to form WP

ij as defined in (13).
The Nyström method, is used to obtain all the results

presented here. Since it involves random selection of sample
points, 10 runs were performed for each case mentions above.
The classification accuracy results shown in Table I are the
average values obtained from multiple runs. The overall ac-
curacy for each run is defined as the percentage of the total
number of correctly classified pixels in the image.

Figure 2 shows a set of results obtained using the proposed
scheme and the Wishart classifier. It can be concluded that
d = 11 provides the most accurate result and the performance
can be improved if proximity is included (i.e., r = 45). This is
also confirmed by the results given in Table I. Increasing the
patch size results in the blue and red regions being merged,
since they are rather small. However, all of these cases perform
better than the Wishart classifier, whose accuracy was 63.1%.

Ground Truth r = N/A   d = 11 r = N/A   d = 15 r = N/A   d = 21

Wishart Result r = 45   d = 11 r = 45   d = 15 r = 45   d = 21

Fig. 2. One set of results used to obtain the average classification accuracy
results given in Table I. For this Figure nLS = 25

Figure 3 shows the normalized eigenvectors of L that corre-
spond to the first k eigenvalues. These eigenvectors are used
as input to the last step of the spectral clustering algorithm
(i.e., k-means). This figure demonstrates how these normalized
eigenvectors can be used to obtain “SC Result” in Figure 3.

Future work involves using contour continuity together
with the patch-based similarity and proximity. An edge map
obtained using the oriented energy will be used to determine
the affinity matrix, where the weights will be small if there
is an edge passing between the two pixels. Evaluating the
proposed scheme on different data sets is also underway.

Fig. 3. Ground truth, a classification result obtained using the proposed
scheme, and the first k eigenvectors of matrix L after normalization

V. CONCLUSION

A new technique based on spectral graph partitioning is
proposed for polarimetric SAR data classification and the
spectral clustering algorithm is modified to account for the
properties of such data. Edge-aligned patch-based similarity
measured by the χ2 distance between histograms and spatial
proximity of pixels are used to form the affinity matrix. It is
shown that this approach not only outperforms the Wishart
classifier, but also allows further improvement by offering
flexibility in using additional cues (e.g., continuity, texture,
optical data) and different affinity functions.
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