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A Combined SAR Doppler_ Centroid Estimation
Scheme Based upon Signal Phase

Frank Wong, Member, IEEE, and Ian G. Cumming, Member, IEEE

Abstract—This paper describes a complete end-to-end Doppler
centroid estimation scheme, which determines the fractional PRF

part of the Doppler centroid. It also resolves the Doppler ambi- ~

guity. Experiments show that the scheme works successfully over
various terrain types, including land, water, and ice, and that it
requires only a modest amount of SAR data to perform reliably.
The proposed scheme has an added advantage that it is-directly
applicable to RADARSAT and ENVISAT ScanSAR data.

The scheme uses two complementary Doppler estimation al-.

gorithms, -both utilizing the phase information embedded in
the radar signal. In each algorithm, upper and lower parts of
the available bandwidth of the received signal are extracted
to form two range looks. The first algorithm, called multilook
cross correlation (MLCC), computes the average eross correlation
coefficient between adjacent azimuth samples for each of the two
looks and then takes the difference between the angles of the
two coefficients. The Doppler ambiguity is determined from the
angle difference. The fractional pulse repetition frequency (PRF)
part is also determined from the cross correlation coefficients. In
the second algorithm, called multilook beat frequency (MLBF),
the two looks are multiplied together to generate a beat signal.
The beat frequency is then estimated and the Doppler ambiguity
determined from the beat frequency.

The MLCC algorithm performs better with low contrast scenes
while the MLBF works better with high contrast ones. Although
each algorithm works well on its own with sufficient averaging,
it is also possible to use quality measures to select the best result
from either algorithm. In this way, scenes of different comtent
or contrast can be handled reliably. This paper presents the
analysis of the two algorithms, explaining why their performance
is affected by scene contrast, which is confirmed by experimental
results with ERS-1 and JERS-1 data.

1. INTRODUCTION
OPPLER céntroid estimators are needed in SAR process-

ing to establish parameters required for operations such -

as range cell migration correction, azimuth compression, and
image registration. In general, the Doppler centroid has to be
accurate to within 5-10% of the azimuth bandwidth to meet
image quality specifications for signal to noise ratio and signal
to ambiguity ratio. In some SAR systems, antenna pointing
information is sufficient to compute the required parameters,
but for many systems, such as satellite SAR’s, a more accurate

Doppler centroid must be estimated from the received data [1]. -
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As the Doppler centroid is aliased by the sampling of the
pulse repetition frequency (PRF), it can be considered to be
made up of an “integer PRF part” and.a “fractional PRF part,”
The fractional PRF part is the centroid wrapped around to the
fundamental frequency range of the PRF, and the integer PRF -
part is referred to as the' Doppler ambiguity. The shape of the
Doppler spectrum due to- the -azimuth beam pattetn is readily
apparent in the aliased received-data, and a number of methods
can be used to estimate the fractional part. However; because -
of the aliasing, a more complicated approach must be used to
estimate the Doppler ambiguity, which »is not readily ‘apparent
in the received data.

In this paper, we present an 1ntegrated Doppler estimator
which estimates both the integer and. fractional parts of the
Doppler centroid from the SAR data. The estimator determines
the absolute Doppler frequency, without aliasing,-and so ob-
tains both of the parameters as a function of range.. Knowledge
of the beam pointing angles is not needed by the algomhm
except as a crosscheck.

A traditional approach to est1mat1ng the fractlonal PRF part
is to use a correlation and- Tegression procedure to- locate
the -centroid of the aliased Doppler spectrum in a sample
of the image [2]. This method has proven to be reliable for
satellite SAR data, but sometimes requires filtering in areas of -
high contrast. In addition, it requires taking the azimuth fast
Fourier transform (FFT) of large blocks. of data, which is not
convenient for ScanSAR' data [3]. '

In order to improve the estimator accuracy, various authors
have sought ways to utilize signal phase .in the estimation.
algorithm. In 1989, Madsen [4] used analgorithm based on
estimating phase increments in raw signal data;. the method _
was originally applied to spectral estimation in other fields [5], -
[6]. The phase increments are estimated by taking the average
cross correlation coefficient (ACCC) between adjacent azimuth
samples (the average of the product of one sample times the -
complex conjugate of the next sample). This method fits in
naturally with the present method, as. little extra computation <
is needed, and gives a more accurate fractional éstimate than
the methods which obtainthe absolute Doppler centroid:

A commonly-used Doppler-ambiguity resolver (DAR) is
based on the property that the range cell migration is a function
of the ambiguity. The method uses an azimuth look correlation
technique [7], in which the correlation is performed in the.
range direction on detected. image amplitude. The method
works well for many. scenes, but lacks sensitivity as the
correlation lag is in the order of only one or two cells per
ambiguity for C-band satellites. This lack of sensitivity means
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that the method is not always reliable in areas of low scene
contrast.

In 1991, the German Aerospace Establishment (DLR) de-
veloped a Doppler centroid estimator [8] based upon the
property that the absolute Doppler centroid is a function of the
frequency of the transmitted signal. The algorithm works in the
range frequency domain, in which the various frequencies in
the transmitted signal can be identified. It computes the ACCC
between adjacent azimuth samples at each range frequency
cell, then estimates the slope and intercept of the ACCC
angle as a function of range frequency. The absolute Doppler
centroid frequency can be obtained from the slope, from which
the Doppler ambiguity is obtained. The slope is not accurate
- enough to estimate the fractional part, but the intercept can be
used to obtain the fractional part more accurately.

In practice, different scene areas tend to have different
contrast which would affect the performance of any estimator.
The DLR algorithm works best in areas of low contrast such
as ice or water. The algorithm still works for high contrast
areas, as long as more data is averaged when obtaining the
ACCC angle.

A distinction of the newer algorithms is that they use signal
phase rather than amplitude as the primary measurement in
the estimation process. This gives the measurements more
sensitivity. In this paper, we will build upon previous concepts
to develop an integrated estimator based on signal phase.
Two new algorithms have been developed which also use the
property that the absolute Doppler centroid is a function of the
frequency of the transmitted signal. »

One algorithm, called the multilook beat frequency (MLBF)
algorithm, is based on multiplying two range looks together,
and using an FFT to estimate the resultant beat frequency.
The beat frequency arises from the beating of the response
of a scatterer at two different transmitted frequencies, and
is a function of the absolute Doppler centroid. The Doppler
ambiguity can be effectively estimated in this way, especially
for high contrast scenes. However, the estimate is not accurate
enough to effectively estimate the fractional PRF part. The
MLBF algorithm will be described in Section II-C.

While developing the MLBF algorithm, it was recognized
that the ACCC angle of the two looks can be computed, and

that the difference between the two ACCC angles can be used

to compute the absolute Doppler centroid. A second algorithm
was developed based on this principle, and will be called the

multilook cross correlation (MLCC) method. This method is

different from the MLBF algorithm in that it works best for
low contrast scenes, as does the DLR method. It shares some
common features with the DLR method, but differs from the
DLR method in that it works in the range time domain rather
than the range frequency domain. This has the advantage of
keeping the range dependence of the azimuth FM rate (and
hence the range dependence of the Doppler centroid) clearly

distinct. The MLCC algorithm will be described in Section II-

B.

Since the MLBF and MLCC methods have complementary
properties, and the most time-consuming computational step of
multilook range compression is common to both methods, it
was decided to develop a Doppler centroid estimation scheme

which combined both algorithms. The word “scheme” is used
to refer to the entire estimation process to distinguish it from
the two constituent algorithms. In this way, a robust Doppler
estimator can be built which works well in all types of SAR
scenes with an adequate signal to noise ratio.

In this paper, the MLBF and MLCC algorithms will be
described, as well as how they are combined into one scheme.
Section II describes and analyzes the two algorithms, illustrat-
ing their operation using a point target: The performance of
either algorithm is affected by the presence of multiple targets
in the scene because their phases interfere with each other. This
interference between multiple targets is studied in Section III.
It turns out that the multitarget interference improves the
performance of the MLLCC algorithm, but degrades the MLBF
algorithm, which explains why the former works best in low
contrast scenes, while the latter works best with high contrast
scenes.

Experiments with ERS-1 and JERS-1 data were performed,
and the results show that the scheme works successfully over
a variety of terrain types, including land, sea and ice. The
scheme requires only a 4-K x 4-K (K = 1024) block of data
to work reliably, but additional averaging does improve the
estimate. This is equal to or less than the volume of data
required by other Doppler estimators. Section IV presents the
experimental results, and Section V summarizes the properties
of the new scheme.

II. ALGORITHM DESCRIPTION

-This section describes the MLCC and MLBF Doppler
ambiguity resolving algorithms, and then the overall Doppler
estimation scheme.

A. Phase Properties of Range Look Data

The operation of the algorithms is illustrated by considering
two range compressed looks of a single point target. Ignoring
the target’s complex amplitude and range envelope, the range
compressed signals of the two looks S7(n)-and Sy(7) are given
by

- A -
~itn (- L) o
S1(m) =W(n - nc) exp . (1)
I ]
- A -
: —jdr (fo + Tf) R(n)
Sa2(n) =W(n —nc) exp . ()
where j2 = —1, 9 = azimuth time from zero Doppler, 7, =

Doppler centroid time, W (n) = azimuth envelope, f; = center
transmitted frequency, Af = frequency separation between
the two range looks, R(n) = instantaneous slant range, and
c = speed of light. '

The phase arguments in (1) and (2) give the azimuth phase
history of the target, which are different between looks 1 and
2 because of the frequency shift Af.
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The instantaneous slant range R(n) can be written as

R(n) =4/ R} + Bn?

B 2 :
o~ 3
RO+2R 3)

where Rg is the slant range: of closest approach, and B is
. the square of the effective velocity between the radar and the
target. Ignoring constant phase terms, (1) and (2) can then be
written in the following familiar forms:

Si(n) =W(n—mn.) exp (—jrKa,n") @
Sa(n) =W (n — 1) exp (—jnKa,7%) (5)

where K, and K, are the azimuth FM rate of the two looks
given respectively by

ol

K,, I T A ©®
2B <fo -I— %—f—>

Ky =t %

Therefore, the two range looks differ in their azimuth FM
rates, by virtue of the different center frequencies used. The
difference between the azimuth FM rates is -
2BAf
cRo .

Af
= K —

ap fo
where K, is the azimuth FM rate for a look centered at fo
and is given by

Kaz - Kal =

®

2B fo
cRy
= %‘(Kal +Ka2) (9)

Kap =

i.e., it is the average of K,, and K,,.

Note that 7. in (4) and (5) may have a small dependence
on range frequency, which creates a shift in the envelopes
W(n — n.) used in (4) and (5). We note, for the ERS-1
parameters to be considered later, the dependence is only in
the order of 1 ms [9], and the envelope shift can be ignored.
However, the change in 7. with range frequency gives rise
. to an offset frequency which is not negligible in the MLCC
estimate described below, and its compensation is an important
part in that class of algorithm.

B. The MLCC Cross-Correlation Algorithni

In the MLCC method, the ACCC angles of the two range
looks are computed, and then the difference between these
two angles is obtained.

Let us examine first the general case in which a signal S(n)
with an azimuth FM rate K, anhd an envelope centered around
Ne is given by '

S(n) = W(n —n.) exp (—jrKqn®). (10)

At azimuth timle 7, the iristantaneous frequency of -the sighal
is —K,n, and the change in phase angle per azimuth sample
is —2r K nlAn = —2wK,n/F,, which-is the familiar result.
when Ay = 1/F, is the azimuth sample spacing and F; is the
radar PRF. The average ftequency of the signal is then — K 7).,
since the azimuth envelope is symmetrical and centered around
ne, and the average CCC angle is 27K, 7./ F,. Ti practice, '
the summation is taken over a-selected azimuth time interval,
typically one to two seconds, for each range cell so-that"the
range-dependent ACCC is defined by
C(n) = Z S(n)5*(n + An) : EREEY

where S* denotes the complex conjugate of S.

Denote the ACCC of Look 1 by Cy(n) and of Look 2 by
Ca(n). Applying the above analysis, the ACCC angles ¢r,
and ¢z, of Look 1 and Look 2, respectlvely, are glven by

¢r, = arg[Ci(n)]

QTKal‘nC : o
= 12
N N s
¢L2 = a’r_g [02(77)] o :
- ZTKalec - .
=T F B
- Then their difference A¢ is°
Ap =1, —br |
21 (Ka, =Koy e ;
= . 4
In practice, this is obtained ,hy" L ,
A = arg { C1(n) [C(n)]"}- (15)
Usmg (8) and (9), (14) can be rewritten as i
Af Kogtie L
A 27 — = o
¢ fO Fa o
VAN Co
= —2r ff’“. (16)
fO Lg o

“The last step has used- the fact the 1nstantane0us frequency at
the Doppler centroid is

f e —_j' o
Since A¢ is much less than a‘radian, angle Wrap;around isnot
a problem and the parameter: fy, ‘ . ‘ K
'  foFuDNg
D fpe =
2rAf

Keogng: 17

(18)

determined from (16) is. the absolute Doppler centrcnd tre-
quency. :

However, in the presence 'of noise and multiple taIgets the
value of f, so determined may not be accurate -enough. To
improve its accuracy; the fractional PRF part f;] is‘détermined
by amore accurate method and the fr. estimateof (18) is'used
to obtain the Doppler ambiguity M. Then, the estimate of f,,
can be refined as follows: ; :
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From (9), (12), and (13), the fractional PRF part is obtained
from the average (aliased) phase increment by

o F, ¢L1 +¢L2‘
he="m T

This method is similar to that proposed by Madsen [4]. Since
one or both of the ACCC angles ¢, may have been wrapped
around, a simple discontinuity detector is used to set f;,c to
within the interval +F,/2. The error tolerance in the two
ACCC angles is relatively high; an error of 5° in the ACCC
angles causes an error of only 0.014 F, in f; .

The Doppler ambiguity is then estimated as

fo. = 1
M = e Me .
round ( A )

(19)

(20

and the remainder

MF, = (fy. — f3.) 21
is mainly a measure of the accuracy of the f, estimate of (18).
To be conservative, a general rule of thumb is to reject the
estimate of f,,, when the magnitude of the remainder exceeds
1/3 of the PRF.

Finally, the ambiguity is used to refine the value of f;_ by

fn. = fp, + MF,. (22)

Basically, the difference between the two ACCC angles gives
the Doppler ambiguity, and their sum gives the fractional PRF
part. In the implementation, the steps are as follows.

1) Compute the ACCC angles ¢r,, () and ¢, () per range
gate; these two angles vary with range time 7. ’

2) Compute f, (7) as a function of range using (19).
Then fit a low order polynomial to express the range
dependence. Take the discontinuities at +F,/2 into
account.

3) Compute Ag(7) between the two looks from (10) and
take its average over all range gates. The average value
of A¢ corresponds to that at midrange.

4) Compute the first estimate of f, from (18) and the
Doppler ambiguity M from (20) at midrange. Then
using the range varying f; (7) found in step 2, the
refined value of f, () is computed from (22) as a
function of range.

The difference between the MLCC and DLR algorithms lies
in the fact that the former operates in the range time domain,
and the latter in the range frequency domain. In the DLR
algorithm, the slope of the ACCC angle with respect to range
frequency is measured. But the frequency domain slope can
be corrupted by fluctuations in the ACCC angle due to mixing
of targets at widely different ranges (as K, is a function of
range time).

To alleviate this problem and to obtain f, as a function
of range, range compression is performed first in the DLR
algorithm. The range compressed data is then segmented into
range time blocks, and the DLR algorithm is applied to each
block which involves a range FFT to transform the data back to
the range frequency domain. This extra set of FFT’s increases
the computation requirement, in comparison with the MLCC

algorithm. Furthermore, there is still mixing of targets within
the block, which may require more averaging. In comparison,
the MLCC algorithm processes range compressed data in the
range time domain, thus eliminating any mixing of targets in
the range direction. :

As an example of the computing requirements, which are
dominated by FFT’s and ACCC’s, consider a range line with
4-K samples. Assume a block size of 256 samples in the DLR
algorithm and a look length of 1-K samples in the MLCC
algorithm. Then the DLR algorithm requires two 4-K FFT’s
per range line for range compression followed by sixteen 256-
point FFT’s to transform the data back to the range frequency
domain. In comparison, the MLCC algorithm requires only
one 4-K FFT and two 1-K FFT’s per range line, or about half
as much FFT computation as the DLR algorithm. Also, due
to the 1-K IFFT length in the MLCC algorithm, the number
of ACCC’s is 2-K per range line for both looks. This is again
half the amount of ACCC’s required by the DLR algorithm,

‘which is 4-K per range line. Therefore, the MLCC algorithm

requires half the total number of arithmetic operations when
compared to the DLR algorithm.

The accuracy of the MLCC method depends upon the range
look bandwidth and the look separation. Let W, be the range
bandwidth of the signal. The optimal separation of the looks
is found to be Af = 2W, /3 and the optimal look bandwidth
is W,/3. The derivations of these properties are given in the
Appendix.

The MLCC algorithm does not require the data to be ac- -
quired in a continuous mode, as the CCC values are computed
on pairs of consecutive azimuth samples. For this reason, it is
directly applicable to ScanSAR data which will be acquired in
discrete bursts for each subswath beam.

C. The MLBF Beat Frequency Algorithm

The operation of the MLBF algorithm can also be under-
stood by examining what happens to a single point target.
Treating each range look as an azimuth time series in one
range cell, the MLBF algorithm begins by multiplying the
two range looks given in (4) and (5) together (conjugating the
second look). Using these equations, the resultant beat signal
Sy(n) for a point target is given by

Sp(n) = S1(n)S5(n)

=|W(n—ne)|? exp [jn(Ka, — Kay)1?]. (23)

Because K,, and K,, are quite close to one another and the
Doppler bandwidth is limited, the signal frequencies expressed
by (23) are confined to a narrow bandwidth. Thus a distinct
beat frequency is discernible, and from (8), (17), and (23),
this average beat frequency fp is

Jo = (Ko, — Kay)7e
Af
e
__A4f

24
7 (24)

e
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The absolute Doppler centroid frequency is then estimated by

fo-

fn. = TAf Jo. 235)

Similar to the MLCC algorithm, the MLBF algorithm also
requires averaging to improve its accuracy when dealing with
real SAR data. In the implementation, the beat signal and its
FFT are computed per range gate. The average power of the
FFT’s is computed over the entire range swath. Then the péak
in the signal spectrum is detected to give the midrange f,,
and the Doppler ambiguity. Finally, similar to the MLCC
algorithm, the estimated range-dependent f; will guide the
algorithm to refine f,, as a function of range.

For a very wide range swath and high f,,_ slope as a function
of range, it may be necessary to segment the swath into range
blocks. The Doppler ambiguity at the m1ddle of each block is
then determined.

To improve peak detection, the following proccdures can
be used. The beat signal of a point target is simulated, and
its FFT gives the ideal impulse response. Then a normalized

correlation between the impulse response and the power of

the averaged FFT’s is performed (a form of matched filtering
in which the result lies between —1 and +4-1). The maximum
value of the correlation also gives a “goodness of fit” which
proves to be useful in selecting the best results between the
MLBF and MLCC algorithms.

When using the MLBF algorithm on ScanSAR data, the
data must be zero padded in the data “gaps.” If short FFT’s are
performed directly on the bursts instead, the impulse response
will be too broad for an accurate estimation of the peak
position of the beat signal spectrum. The zero padding results
in modulation artifacts in the spectrum which may affect
the accuracy of detecting the peak position (see Section IV-
E). One alternative is to apply a power spectrum estimation
technique to the beat signal frequency without resorting to
transform methods [10]. Another alternative is to only use the
MLCC algorithm for ScanSAR data, averaging more data as
necessary for high contrast scenes.

D. The Integrated Doppler Centroid Estimation Scheme

An integrated scheme to determine the absolute Doppler
centroid frequency is shown in Fig. 1. The Doppler ambiguity
is estimated using both the MLBF and MLCC algorithms, and
then the best result is selected using a “performance” criterion.
The fractional PRF estimate is obtained conveniently as the
ACCC angles are already computed in the MLCC algorithm.

The scheme is simpler than it first appears, as the computa-
tion is dominated by the extraction of the range looks, which is
common to each algorithm. It is best to do range compression
during look extraction to keep.the range dependencies distinct,
and to minimize signal interference in the MLBF algorithm,
Since the two DAR algorithms compliment each other in terms
of scene contrast, the proposed method can work well by
averaging only a limited number of range lines.

The criteria which have been found useful for selecting the
best of the MLBF and MLCC results are as follows.

'Raw signal data’

R

Compress
two range
looks -,
Look1l C Look 2
; - MLCC
MLBF : oy :
Beat the Compute
two looks ACCC
Beat Look 1
signal : -
spectrum Determine
v ‘| fractional ‘
Determine PRF part || ‘Determing -
Doppler o ——L_ Doppler
ambiguity . ; g ambiguity
Fractional 1 S
‘ | PRF part MLCC results
MLBF results Select
‘ " best
. ’ *result
Refine - PR
Doppler - Dopplet ambiguity
centroid : ‘
Doppler centroid
frequency
Fig. 1. The integrated doppler'centroid estimation schieme:

Normalized Correlation: ‘The “impulse response” of a point
target is computed for the MLBF algorithm. The nofinalized
correlation can then be computed between the impulse re-
sponse and the beat frequency spectrum. If-the normalized
correlation is above a certain threshold say. 0.6, then accept
the MLBF result. : |

Consistency of Esnmate Segment the ~data 1nto aznnuth

blocks. Perform estimates on each ‘block; and Compare the. .

consistency of each algonthrn : !

Scene Contrast: Empirically. establish the performance of -

the MLBF and MLCC -algorithms as a. function of scene

contrast. The DAR algorithm selection is then based upon the

measured scene contrast. A measure of scene contrast Cs is

suggested by Madsen [4]: = = R

oy

D)

where [ is the 1mage intensity and- (. ): denotes the’average
value. ; :

@6

111, MULTITARGET ANALYSIS

In the previous ‘section, we explained the operatmn of the
DAR algorithms by examining the response to a single point
target. In order to understand the algorithm’s behavior with
real SAR -data, we will first analyze the simplest’ multltarget‘
case of two targets, and then generalize to a case with more
than two targets. In this way we will ‘show that the MLCC
algorithm works best with‘low- contrast scenes ‘and MLBF with
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Magnitude

ﬂk

Azimuth
Time

T T >

Fig. 2. Overlap of two targets.

high contrast ones, due to the fact that interference between
multiple targets affects the two algorithms in different ways.

A. Phase Histories of Two Targets

Consider two targets Tp and Ty which are in the same range
_cell and are separated by 7¢ — np seconds. If their envelopes
overlap, as illustrated in Fig. 2, their phases will interfere with
each other and affect the performance of the algorithms.
For the two targets, let the following be in effect.

n discrete azimuth time with any arbitrarily chosen
origin;

An 1/F,;

np azimuth time of closest approach for Target T'p;

no azimuth time of closest approach for Target Tp;

P complex amplitude for Target Tp;

Q complex amplitude for Target Tg;

W(n)  azimuth envelope;

Li(n)  range compressed signal of Look 1 at range gate
of targets;

Lo(n)  range compressed signal of Look 2 at range gate
of targets;

Li,.(n) range compressed Target T in Look 1;

Ly,(n) range compressed Target Tg in Look I;

Ly, (n) range compressed Target 7 in Look 2;

Ly, (n) range compressed Target Ty in Look 2.

Looks 1 and 2 are one-dimensional signals since only the
range gate containing the compressed targets is considered.

From (4) and (5), ignoring the irrelevant phase term due to
Ry and some other range terms due to range compression, the
range compressed signals are

Li(n) = L1, (n) + L1g (n)
= PW(n—n. —np) exp {—jrKa, (n —np)’}
+ QW (n — ne — ng) exp{—jnKa, (n — 1¢)*}
27)
La(n) = Lap(n) + L2y (n)
=PW(n—n.—np) exp{—jrKa,(n — np)*}
+ QW (n —ne — ng) exp {—jmKa,(n — ng)*}-
’ (28)

It has been assumed that the target trajectory stays within
one range cell during the azimuth exposure; this gives the

maximum possible interference duration between the targets
within a range gate. Range cell migration effects will be
discussed in Section III-B.

Since W(0) is the maximum value of the antenna weighting,
the peak for Target 7p occurs at azimuth time 7. + np, and
Target T at time 7. + Q.

B. Effect on the MLCC Algorithm
Consider the two targets Tp and Ty first. The ACCC

between adjacent azimuth samples for Look 1 is defined as

Ci(m) =Y Li(n)Li(n+ An). (29)
n

Again, 1 assumes discrete values and adjacent samples are
separated by An.

By expanding to show the contribution of each target, we
obtain

Ci(n) =Crpp+(n) + C10q~(n)
+ Cipg+(n) + Cip-q(n).

(30)

The four terms in (30) are as follows.
e The first term is the ACCC between adjacent azimuth
samples due to Target T alone, and from (27) we see
that

Cipp-(m) =|P|* > W2(n—ne — np)
n
- exp {—jnKa, (1 — 1p)?
+ j7Kaq, (n+ An —np)*}
~|P|> > W' —n.) exp (j2rKq, 1/ An)

n
(€3]

where ' is a dummy variable replacing 1 — n7p. The first
approximation utilizes the fact that W{(n — n. — np) =
W(n —n. —np + An). The second approximation is due
to the fact that the contribution of K,, An? to the phase
is small enough to be ignored in practice.

* Similarly, the second term is the ACCC due to Target T,
alone:

Crgo-() =1QP° > W2(n—ne —ng)
n
cexp{—jnKq (n— 77Q)2
+ i Ka, (n+ An —ng)?}
~|P2Y " W2y —ne) exp (j2rKa,n' An)

7
(32)

where 7/ is a dummy variable replacing n—7¢. The angle
of Cigg~(n) is the same as that of Cypp-+(n). The first
and second terms Cypp~(n) and Cigg-(n) in (30) are
the desired ones.
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« The third term is the ACCC due to Target T and the
complex conjugate of Target T:

Cipg-() =PQ* Y W(n—n—1p)W(n — 1 — Q)
~ |
- exp {—jnKa, (n—np)*
+ jrKa, (n+ An~ng)*}

=PQ* Y W —n.+OW(n —nc)
77’
- exp {JnK,, (20 + An+e)(An — €)} (33)

where 7/ is a dummy variable repfacing n — ng and

€=1Q — NP (34)

is the separation between the two targets.
« Similarly, the fourth term is

Cipeo(n) =P*Q > W(n—nc—np)W(n —n. — ng)
n
- exp {=jrKa, (n — ng)*
+ 7 Ko, (n+ A1 —np)?}

=P QY W 1.+ OW(y —nc)
n/
< exp{jmKa, (20 + An+e){(An+€)}(35)

where 7/ is again a dummy variable replacing 7 — 7.

Similar results are obtained for Look 2. The algorithm then
finds the angle difference between C1(7) for Look 1 and Cq(n)
for Look 2.

In the case that the two targets are so far part that the side
lobes of one have negligible effects on the other target, then
the last two terms in (30) can be ignored leaving only the
first two terms Cipp+(n) and Cigg«(n). The first term is
the ACCC between adjacent azimuth samples due to Target
Tp alone and the second term due to Target Ty alone. Then
the angles of C1(n), Cipp~(n) and Cigg«(n) in (30) are all
the same. Similarly, the same result holds for Look 2. Hence,
the Doppler centroid frequency obtained for two targets in the
MILCC algorithm is that same as the one-target case; that is,
the correct Doppler centroid is determined.

In a more general case of two targets, the terms Cypg- (1)
and Cyp-g(n) can introduce an error in the angle of Cy(n),
and similarly for Look 2. Unfortunately, these two errors for
the two looks are not the same, therefore they do not cancel
each other in the angle difference.

For multiple targets, the terms C)pg-(n) and C) P*Q(U)
in (33) and (35) respectlvely have zero mean. Hence, the
presence of multiple targets actually helps to' reduce their
adverse effects. Statistically, the more the number of targets,
the closer will be the angle of Cq(n) to the case of a point
target. The same argument applies to Look 2. Hence, the
difference between the two angles C(n) and Co(n) improves
in accuracy when the number of targets increases. In this way,
the MLCC algorithm performs better in scenes of low contrast.

It remains to discuss the effect of range cell migration which
has been ignored in the development above. The energy in
any one particular target may traverse more than one range

cell in the area being averaged in the received signal. Then
the Doppler centroid contribution of this target will be biased
according to which part of the target is in the range cell being
considered. A similar bias will occur when the target is only
partially exposed within the azimuth averaging region.

However, many targets are being averaged in practice, and
the Doppler frequency biases caused by partial targets will
tend to average out to zero bias. In effect this means that
the ACCC computed is equivalent to. that which would be
obtained if the central part of the target is exposed in the
current range cell. Furthermore, when- obtaining: the ACCC
angle difference between looks, more averaging is performed
in the range direction, helping to remove any bids. For these
reasons, range cell migration correction does not -have to be
performed in the Doppler centr01d estlmatlon algorlthms under
discussion. :

‘C. Effect on the MLBF Algorithm

Agam consider the two targets Tp and T ﬁrst Frorn (27)
and (28), the beat signal 1s

Ly(n) = La(n) L3 (n) , ,
= L1, () L3, (n) +L1g(m) L, (n)
+ L, (L5, () + Lig(m) L5, (n).  (36)
The above holds for. any two targets: in: ugeneral regardleSs
of their separation. The four terms ‘corresponds to the four
different components.
* The first term represents the beat s1gna1 generated by
Target Tp alone.
"+ The second term represents the beat s1gna1 generated ’by ‘
Target T alone. .
* The:third and fourth terms are the 51gnals generated by
the cross beating between the two targets:

Using (27) and (28) again, (36). can be rewritten as

Ly(n) =

|PPW2(n—n.—np) S
- exp {—jm(Kq, — a2>(77 np)*}
FQPW?(n—m.—=ng)

- exp {—jm(Ka, — Ka,) (n = 10)* b
+PQW(n~1n.— np)W(n — 1 = 1Q)
- exp (g1 Ko, (0 ~np)* + g Ko, (0~ n)*}
+P*QW(n —ne —np)W(n—n. —ng)

- exp {J7 Ko, (n = np)” = j7HKa, (1 —10)"}. (37)

‘The FFT of Ly(n) is e‘qual‘ to the sum of the FFT’s of the

above 4 terms.

+ The FFT of the first term can be considered to be the
“impulse response” of a single target using the MLBF
algorithm. For target P, this impulse: response peaks at
the frequency

fp= (Ko, — Ko,) e (38)

which follows from the:development leading to‘\(24).~ Lo
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e The FFT of the second term also peaks at the same
frequency

fo=1rp

= - (Kal - Kﬂ'z)nc‘

However, there is an additional phase shift in the FFT
relative to the FFT of the first term, due to the azimuth
time separation np — ng between the two targets. This
phase term turns out to be very important as it can cause
the two targets to interfere destructively.

¢ The beat frequency of the third term is

fPQ* (77) = _Kal(n - nP) + Kag('r] - WQ)'

The FFT of the third term peaks at the frequency equal
to the beat frequency at the center of the overlap area
shown in Fig. 2. As seen in the figure, the azimuth time
of the center is 7. + 0.5(np + 7¢g). Substituting this for
7 in (40) and simplifying, we obtain the peak frequency:

fPQ* = "(Kal - a:)nc - 0-5(Ka1 + Ka2) (nQ - ’f}P)-
41

(39)

(40)

The power at this frequency is less than that for the first or
second term, due to the decrease in the antenna weighting
in the overlap area and the decrease in the area itself when
the target separation increases.

From (38) and (41) we can write

frox=fp—Af

where A f; is the frequency offset of fpo- from fp:

“42)

Afy = O'S(Kal +Ku2)("7Q _WP)' 43)
¢ Similarly, the beat frequency of the fourth term is
fpeq(n) = Ko, (n ~np) — Kay(n —1mq)-  (44)

Again, substituting 7, +0.5(np +1n¢) for n into the above
and simplifying, we obtain the peak frequency:

fP*Q == (Klll - Kaz) Ne + 0'5(K111 + Kaz) (77@ - nP)
=fp+Afy 45)

which is offset by the same amount from fp as fpg-,
with an opposite sign.

To summarize, there are three peak frequency components in
the FFT of Ly (n), one corresponding to the Doppler centroid,
and a “paired-echo” due to the cross beating between the
two targets. Fig. 3 shows a typical example of the beat signal
spectrum between two targets, when their separation‘is 0.45 of
the 3-dB azimuth beamwidth, and the ideal response is shown
as the dashed line. The paired echoes are noted, along with
a distortion in the shape of the central beat frequency due. to
the cross beating.

The MLBF algorithm therefore suffers from the following
adverse effects when multiple targets are present. When more
than two targets are present in the same range cell, the
distortion of the peak beat frequency gets worse, and its power
drops in relation to the power in the paired echoes (which
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Fig. 3. Spectrum of beat signal of two overlapping targets. (a) Full scale.
(b) Expanded scale.

now result from the cross beating of all pairs of overlapping
targets). As the number of dominant targets increases, the
power due to the cross beating can eventually mask out the
required beat signal. This explains why the MLBF algorithm
does not work so well in low contrast areas, as opposed to
areas where a few targets dominate.

D. Point Target Simulation Experiments

Experiments. were performed using simulated point targets
and C-band parameters to verify the above analysis. When only
two targets are used, and were placed close to each other, the
correct ambiguity was detected using the MLBF algorithm,
but not using the MLCC algorithm.

Experiments were then performed with a large number of
targets distributed at random to simulate radar clutter. The
average density of targets in a range cell was varied in 8 steps
between a low density of 1/8 targets per azimuth sample to
a high density of 1 target per azimuth sample. The following
random distributions were assumed: uniform distribution for
separation between targets, uniform distribution for target
phase, and a Gaussian distribution for target amplitude. In each
experiment the input data was generated 50 times, emulating
an average more than 50 range cells.

In the MLBF algorithm, the FFT power was summed over
the 50 runs, and the sum was normalized to the one-target
case. In the MLCC algorithm, the ACCC'’s of each look were
summed over the 50 runs and the angle A¢ calculated between
the ACCC’s of the two looks. In all the eight cases, the MLCC
detected the correct ambiguity, but the MLBF could only do so
when the target density is less than or equal to 3/8 targets per
PRI. Fig. 4 show the beat signal spectrum of this particular
case.

Thus the experiments verify that the MLCC algorithm works
best with low contrast scenes, while the MLBF works best with
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Fig. 4. MLBF response of randomly distributed targets (density of 3/8 ta.rgets
per azimuth sample). (a) Full scale. (b) Expanded scale.

high contrast scenes, and that one of the two algorithms finds
the correct ambiguity with any target density.(scene contrast)
simulated.

IV. EXPERIMENTS WITH SATELLITE DATA

A. Scenes and Parameters

Experiments were performed on the MLBF and MLCC
algorithms with real SAR data acquired from ERS-1, the
European Space Agency C-band SAR satellite, and JERS-1,
the Japanese National Space Agency L-band SAR satellite.
Scenes imaged over various terrains were used:

1) Flevoland (farm land, inland sea, two scenes), Holland,

 ERS-1;

2) Sardegna (mountains, trees) Italy, ERS-1;

3) Island (agficulture, sea, forested mountams, two scenes),

Indonesia, ERS-1;

4) Arctic Ocean (two sea ice scenes), Canada ERS-1;

5) Atlantic Ocean near Newfoundland, Canada, ERS-1;

6) Mit. Fuji (forests and farm land), Japan, JERS-1.

All scenes are acquired from ERS-1, except the Mt. Fuji
scene which is acquired from JERS-1. In the case of the ERS-
1 scenes, all but one were taken in the yaw-steering mode,
where the Doppler ambiguity is normally zero (it was zero
in each of the scenes tested). The exception is one of the
Flevoland scenes, where the satellite was operated in roll-tilt
mode, when the Doppler ambiguity is often away from zero (it
was +3 in the scene tested). The JERS-1 scene has a Doppler
ambiguity of +1.

A total of 18 different nonoveﬂappmg terram diverse areas
were selected in the ERS-1 scenes, and 4 in the TJERS-1 scene;
ie., a-total of 22 areas. Each area contains 4-K range lines
by 4-K range pixels, covering an area of approximately 70

TABLE T

ERS-1 AND JERS-1 PARAMETERS
-Parameters : i ~ERS:-1 JERS-1 ]
Centre transmitted frequency, fg 53 GHz 1.275 GHz
Range sampling rate, F,. N 18.96 MHz 17.076 MHz
Pulse width, T; 37.1 ps. 35.0 us
Range FM rate, K, 0.41888 MHz/js | 0.4286 MHz/ps |
PRF, R 1679 Hz © 15557 Hz
Look separation, Af 10.8 MHz 110:8 MHz
Look bandwidth, W; . 4 MHz . 4 MHz
System offset frequency, fos 1400 Hz -901 Hz

T T T

J<~= Look 1 -==>|

f<— Look2 —>i

Magnnude

L . 1 \" -
1000 1500 2000 . ~ 2600 ° 3000

ange Spectrum Sample

Fig. 5. Location of looks taken from the ranga spectrum. (ERS-1 data
Flevoland roll-tlt scene).

km in range by 17 km in azimuth. The parameters of the
radar system, and those used in the DAR processing, are
shown in Table I. The table contains an entry called system
offset frequency f,s which, similar to the DLR algorithm,
is a systematic offset to be subtracted “from the -measured
value of f,. in the MLCC. algorithm (it is° not needed in
the MLBEF algorithm). This offset -frequency depends upon
the antenna characteristics, and must be calibrated for each
satellite. It was first infroduced by Balmer 18]-and we have
developed a mathematical model {9] to show how: it originates
{rom the dependence of antenna pomtmg angle on transmitted
frequency. :

Fig. 5 shows the magmtude of the 1a;nge spectrum of a
typical range line, showing the placements of the looks used in
the experiments. The signal bandwidth is about 15 MHz,.and
a look bandwidth of 4:MHz 1is selected for-the experiments.

_ The ratio of the look bandwidth to: signal bandwidth is then

about 0.27 which is close to the optimal value derived in the‘
Appendix. L
The Doppler centroid ‘frequency of each “scene was first
obtained by, the traditional method of peak search in'the
Doppler specttum, with the' Doppler ambiguity: resolved by
the azimuth look correlation method. This Doppler centroid’
frequency was-then used as the ‘measurement reference. Ref-
erence [1] cites. the achievable accuracy to-be about 10:Hz,
but practicable :experience. has shown that this estimate has:a
standard deviation of about 20 Hz. :
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Fig. 6. ACCC angles estimated from the roll-tilt Flevoland scene. (a) ACCC
angles of the two looks. (b) ACCC angle difference between the two looks.

B. Experiments with the MLCC Method

Of the 22 areas tested using the MLCC method, 21 gave
the correct ambiguity with its remainder given by (21) less
than 0.3 PRF. The exception was an area in one of the Island
scenes, where the number of range lines averaged had to be
increased to 8 K before the correct Doppler ambiguity was
obtained.

Given that the correct ambiguity was obtained, the rms
difference between the Doppler centroid estimated from the
MLCC method and the reference values obtained from the
traditional approaches was only 36 Hz. The largest difference
was 105 Hz, and the next largest was 69 Hz. Note that the
fractional PRF accuracy of the MLCC method (as well as for
the MLBF method) depends upon that of the ACCC estimator
used in both methods.

Fig. 6 shows typical variations of the ACCC angles for
looks 1 and 2, and their difference, as a function of range.
The slopes of the ACCC angles are an indication of the range
variation of the Doppler centroid. The area averaged covers
both land (Flevoland polder) and water (the Zuiderzee), as
indicated in the figure. The water area exhibits less ACCC
angle fluctuations than the land area, because it has less
contrast. Even though the ACCC angle difference is small
compared with its standard deviation as shown in Fig. 6(b),
it is detectable when averaged over the range swath of 700
output range cells, and the absolute Doppler centroid can be
estimated reliably to within 1/3 of the PRF.

C. Experiments with the MLBF Method

MLBF experiments were performed with the same 22 areas
used in the MLCC experiments. In each experiment, the
normalized correlation of the Doppler spectrum with an ideal
impulse response was extracted as a quality measure. For
averaging areas of 4 K x 4 K samples, the algorithm works
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TABLE I
SuMMARY OF DOPPLER AMBIGUITY ESTIMATION RESULTS
Scenes Contrast Areas | MLCC | MLBF l
ERS-1 C-band
Flevoland (Roll-tilt) High 3 |V v
Flevoland (yaw-strd) High 1 v Vv
Sardegna Medium 1 V4 v
Island 1 Medium 3 x(*) |V
Island 2 Medium 3 v Vv
Ocean Medium/Low 1 V4 Marginal
Ice 1 Low 3 v x (*)
Tce 2 Low 3 v x (*)
JERS-1 L-band
Mount Fuji Low 4 Vv Vv
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Fig. 7. Beat signal spectrum of roll-tilt Flevoland scene. (a) Full scale. (b)
Expanded scale.
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Fig. 8. Beat signal spectrum of ice scene. (a) Full scale. (b) Expanded scale.

well for the land scenes, marginally for the ocean scene and
poorly for the ice scenes, as summarized in Table II.

Fig. 7 shows a typical averaged spectrum in the land portion
of the high-contrast roll-tilt Flevoland scene. A distinctive peak
in the vicinity of the desired beat frequency can be easily
detected, and the correct Doppler ambiguity can be determined
from the peak position. On the other hand, Fig. 8 shows the
beat spectrum of a low-contrast ice scene, and the spectrum
does not show a similar distinctive peak (which becomes
discernible with more averaging as will be discussed later).
In this case, the MLBF method just fails to find the correct
ambiguity. These two figures show typical spectra for the two
extreme cases in contrast.

" The normalized correlation coefficient showing the good-
ness of fit varies between 0.8-0.9 for all land scenes, de-
pending upon the contrast of the scene. The correct ambiguity
was detected for these scenes from the spectrum peak, with a
remainder less than 0.2 PRF. Experiments were repeated by
reducing the averaging region to 1/3 of the range swath, and a
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similar high degree of correlation was obtained except when
the range gates covered water.

For the ice scenes, the normalized correlation coefficient
was found to be about 0.5. When averaging over 1/3 of the
range swath, the coefficient fell below 0.5. On the other hand,
experiments were also performed to increase the amount of
data, by averaging all FFT’s over several areas (three areas
in each ice scene). In this case, a beat signal spectrum peak
was observable and the normalized correlation increased to
0.67. The conclusion is that the algorithm needs to process
more data for low contrast scenes, just as MLCC does for
high contrast scenes.

In the ocean scene, despite its medium/low contrast, a
distinctive peak was still detected with the normalized corre-
lation coefficient found to be 0.7. The correct ambiguity was
determined. However, when averaging over only 1/3 of the
range swath, the spectrum peak was marginally visible in each
group and the normalized correlation coefficient was about 0.5.
This suggests that it is best to use full-swath range blocks in
the estimation process. It is believed that the performance of
MLBF over water depends upon the sea state, and has to be
confirmed with more experiments using scenes acquired over
water.

D. Summary of Experimental Results

The experiment results for the two DAR algorithms are
summarized in Table II. The symbol ./ denotes that the
algorithm detects the correct ambiguity, and X denotes that
it does not. For the experiments marked (*), averaging over
a larger area than a 4-K x 4-K block was needed for the
respective algorithm to give the correct Doppler ambiguity.

The MLBF algorithm works successfully on high-contrast
scenes such as farmland and mountains, but not so well on low
contrast ones such as water and ice. A conservative choice of
the normalized correlation threshold used to select the MLLBF
method over the MLCC method was found to be 0.6.

E. ScanSAR Experiments

Further MLBF experiments were performed by using the
roll-tilt Flevoland and the yaw-steering Sardegna scenes to
simulate a four-beam case of ScanSAR data. Because it
correlates only over consecutive azimuth samples, the MLCC
algorithm, and its associated fractional PRF estimator, are
unaffected by the burst cycles of ScanSAR.

To simulate ScanSAR data, ERS-1 data was segmented into
16 bursts, each of length 64 azimuth samples, and the data
gap between adjacent bursts was set to 192 samples (one of
the ENVISAT operating modes). The data gaps were filled
with zeros before applying the MLBF algorithm. In practice,
the interpulse period may not be an integer multiple of the
pulse repetition interval; in this case, interpolation has to be
performed, or more efficiently, a linear phase adjustment [11]
can-be made to the data spectrum. However, further study
should be performed first to study the adverse effects of using
the original data without the interpolation or phase adjustment.

The beat signal spectrum of the Flevoland scene, after
zero padding the data gaps, is shown in Fig. 9. The spiky
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Fig. 9. Beat signal spectrum of simulated ScanSAR data. (a) Full scale. (b)
Expanded scale.

appearance, which also appears in the ideal impulse response,
is due to the periodic rectangular envelope of the data in the
azimuth time domain. The normalized correlation coefficient
was found to be 0.8 and the correct ambiguity was obtained.
Results of the Sardegna scene were similar, but the normalized
correlation was a little lower at 0.7. In both cases, some dis-
tortion of the beat spectrum peak was observed. Despite these
successful results, more experiments should be performed, as
the spectrum peak width is affected by the burst arrangements
in the different RADARSAT and ENVISAT ScanSAR beams.

V. CONCLUSION

An end-to-end scheme to estimate the absolute Doppler cen-
troid frequency has been presented which combines Doppler
ambiguity and fractional PRE estimation. The methods are
based upon processing two range compressed looks. The
scheme includes two complementary algorithms, but the effi-
ciency is high because the algorithms share many of the same
preprocessing steps.

The algorithms were tested on blocks of data as small
as 4-K x 4-K, and it was found that the MLBF algorithm
works best on high contrast scenes and the MLCC algorithm
works best on low contrast ones. Taking advantage of these
complementary properties, the proposed scheme incorporates
both algorithms, using a quality measure to choose the best
estimate. The scheme requires only a reasonable amount of
data to operate successfully. Furthermore, the fractional PRF
estimator is a by-product of the MLCC DAR.

From the data experiments done so far, we are confident that
the new scheme works as well as existing estimators, and likely
better because we are able to choose the best result from the
two DAR algorithms. When the scheme is implemented in a
production processor, more accurate assessments can be made.

The MLCC algorithm is directly applicable to ScanSAR
data, while the MLBF algorithm requires zero padding the
data gaps. Experiments showed that the performance of the
MLBF algorithm on ScanSAR data should be close to the
performance on regular beams.

APPENDIX
OPTIMAL BANDWIDTH OF RANGE LOOKS

This appendix derives the -optimal bandwidth of the two
range looks in the MLCC and MLBF algorithms. As the look
bandwidth increases, the measurement information content
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increases, but the measurement sensitivity decreases, so an
optimal bandwidth must be found.

In the MLCC algorithm, the signal .S to be measured is the
difference between the averaged CCC angles of the two range
looks. In the MLBF algorithm, it can be argued that measuring
the peak of the beat signal is equivalent to measuring the CCC
angle in the beat signal itself. Regardless of the algorithm, S
is then proportional to the look separation Af, i.e.,

S oc Af. (46)

The following development applies to both algorithms.

Assuming measurement noise to be uncorrelated, its vari-
ance in the measurement varies inversely as the number of
independent range samples available in each look and this
number is in turn proportional to the look bandwidth Wy.
The noise standard deviation o can then be written as

1

Wi
Let W, be the available signal bandwidth. The two looks
should be placed at the edges of this bandwidth in order to

maximize the look separation, thereby increasing the measure-
ment sensitivity. Then we have

Ws:mk+Af

oN X 47)

48)

It can be shown that the maximum signal to noise ratio (S/on)
occurs when

Wi = 1 W, (49)

The corresponding value of look separation Af is

Af=2W,. (50)

It is recommended to choose a look bandwidth in the range
0.25 < Wy, < 0.4. (G1))]

For this choice, the signal to noise ratio is within 95% of its
maximum value.
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