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Abstract—Among the current Doppler ambiguity resolvers, the Multi-Look Beat frequency (MLBF) algorithm proves to be the most reliable one, especially in high contrast areas. The existing MLBF algorithm uses FFTs to measure the central frequency of the beat signal but the estimation accuracy is limited by quantization errors. This paper proposes an improved method of estimating the beat frequency in the MLBF algorithm that is based on phase increments. In our work, we examined five established frequency estimators and found that the Iterative Linear Prediction (ILP) method has the best performance. The experimental results on RADARSAT-1 data show that the new MLBF algorithm using ILP can obtain the correct ambiguity number in a higher percentage of blocks and that the RMS error of the results is less than half that of the existing method.  
I.  Introduction

In high quality SAR data processing, the estimation of the Doppler centroid frequency is an essential procedure for good image focus.  Due to the fact that the azimuth data are sampled by the PRF, the Doppler centroid estimate is observed in two parts: the baseband Doppler centroid and the Doppler ambiguity.  In the estimation of the baseband part, algorithms such as the "Spectral fit" and Average Cross Correlation methods can give reliable estimates in most cases [1].  A number of algorithms have been developed to find the Doppler ambiguity number, such as Look Misregistration [2], Multiple PRF [3], Wavelength Diversity (WDA) [4], Multi-look Cross Correlation (MLCC) and Multi-look Beat frequency (MLBF) [5] algorithms.  However, the accuracy and robustness of the Doppler ambiguity estimate still needs to be improved to satisfy the current high quality SAR processing requirements. 

The Multi-look Beat frequency (MLBF) algorithm proposed in 1996 [6] takes advantage of the differences between the azimuth frequency of two range looks to estimate the Doppler centroid.  It has good performance in medium and high contrast areas.  It also avoids estimating the offset frequency due to the antenna characteristics, as required in the WDA and MLCC algorithms.  However, because the existing MLBF algorithm uses FFTs to estimate the central frequency of the beat signal, the estimate accuracy is affected by quantization errors, which are related to the FFT length.  In addition, the algorithm using FFTs cannot be applied directly to burst mode data, such as ScanSAR data [6].  In this paper, an improved beat frequency estimation method is presented that uses frequency estimators based on phase increments of the beat signal.  Experimental results with RADARSAT-1 data show that it has a significantly better performance than the existing method of estimating the beat frequency.

II. The Existing MLBF Algorithm

A. The principle of the beat frequency

The MLBF algorithm is based on the fact that the Doppler centroid frequency can be derived from the azimuth frequency difference of radars operating at two different center frequencies.  In this algorithm, the range compressed signal, s(η),  is divided into two range looks, s1(η) and s2(η).  Then, by multiplying (beating) the signal of one look with the conjugate of the other look, a beat signal results for a point target:
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The variable η  is azimuth time, ηc is the time when the target is illuminated by the beam centre, R(η) is the slant range between the radar and the target, c is the velocity of the transmitted signal, f0 is the center frequency of the transmitted signal, (fr is the frequency difference between the two looks and wa(η - ηc) is the antenna pattern.  

 To examine the time dependency of the beat signal in detail, we expand the equation of R(η)  about ηc. If the higher order components are ignored, the range between target and radar can be given by:
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where Vr is the effective radar velocity and θr,c is the squint angle of the center of the beam, measured in the slant range plane.  The average frequency of the beat signal is given by the linear term of the phase in (1), and can be expressed as:
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where fbeat is the center frequency of the beat signal, and fηc is the Doppler centroid frequency.

Similarly, the bandwidth of the beat signal can be expressed as:
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where BWazimuth is the azimuth bandwidth of the received signal. 

 Both the center frequency,  fbeat, and the bandwidth, BWbeat, of the beat signal are quite small compared to the system Pulse Repeated Frequency (PRF).  Taking the RADARSAT-1 Vancouver scene as an example, fbeat is about 21 Hz, the predicted BWbeat  is about 2.5 Hz, while the PRF is 1275 Hz. The small value of  fbeat avoids unwrapping, which is the main problem in the estimation of the total Doppler centroid.  The beat frequency must be estimated to within +/- 1.9 Hz, which are the ambiguity error limits in this case. 

The narrow bandwidth, BWbeat, justifies that the beat signal can be approximated by a single frequency with additive noise.  Using only the linear term of (2), the beat signal, (1), can be written in discrete time as: 
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where n = 0, 1, … N-1 is the time index,  A(n) is the azimuth envelope, and z(n) is the complex noise with variance 
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From (3), it can be seen that the beat frequency is proportional to the absolute Doppler centroid.  So if we estimate the beat frequency correctly, the absolute Doppler centroid frequency can be obtained from:
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 The above analysis is based on the existence of a single target in each range cell.  When there is more than one target, cross beating exists between the targets.  This lowers the SNR of the beat signal and makes it harder to estimate the beat frequency accurately [6].  

B. Beat frequency estimation using FFTs

The existing MLBF algorithm uses FFTs to estimate the beat frequency [6].  The FFT method is based on maximum likelihood estimation (MLE), described by Rife and Boorstyn in [7], resulting in power estimates from the periodogram at discrete frequencies [8].  The estimation equation is given by:
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where NFFT is the FFT length.  The beat frequency can be estimated by finding the discrete frequency of the maximum FFT coefficient.  However, this method involves a quantization error because it only evaluates the energy at discrete frequencies.  The maximum quantization error is:
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Since the existence of the quantization error restricts the accuracy of the estimator even at high SNR, a more precise method is recommended to improve the beat frequency estimation.  A center of gravity estimate was applied to the periodogram, but the improvement was small.
III. Proposed method using phase increments

To solve the problem of quantization errors, frequency estimators based on phase increments are introduced into the estimator.  In this paper, we examine the performance of five frequency estimators: Kay's estimator, ACCC estimator, Four Channel Filter Band (FCFB) method, High Lag Correlation method and Iterative Linear Prediction (ILP) method.
A. The Basic Kay  estimator

The estimator proposed by Kay in 1989 [9] is the basic frequency estimator that uses phase increments instead of the periodogram to estimate the signal frequency. If we assume that the signal and noise ratio (SNR) is large, the additive noise model of (5) can be replaced by an approximate model using phase noise, given by:
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where u(n) is zero mean white Gaussian noise with variance 
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and the differenced phase (phase increments) is given by:
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Now, the problem is to estimate fbeat from a signal with Gaussian noise, u(n+1) - u(n), which is no longer white.  After some algebra, the estimate based on the phase increments is found to be:
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where w(n) is the weighting function that allows the estimator  to attain the Cramer-Rao Bound.  The optimal weighting has a parabolic shape [9].

B. Improved estimators

As the arg operation is non-linear, if it is interchanged with the sum operation in (12) the estimate is different.  When interchanged, the estimator calculates the average phase increment using the Average Cross Correlation Coefficient (ACCC) at lag one:
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It is worth noting that the use of the ACCC was also proposed by Soren Madsen in 1989 for baseband Doppler centroid estimation [10].  Since this method uses the individual signal magnitudes to weight the components in the correlation sum, rather than w(n), it can achieve a more accurate estimate when the noise level is relatively high, because the samples with low signal strength are de-emphasized.

The Four Channel Filter Bank (FCFB) Method was proposed by Fowler and Johnson in 1999 [11].  In this method, four simple filters are applied to overlapping frequency bands that cover (-(, +(].  The four filters work as band pass filters, one of which lets the beat signal pass through the strongest.  while removing noise outside the pass band.  Then, the signal in the filter channel with the highest energy is processed using Kay's estimator.  The final result is obtained by adjusting the frequency of the result according to the channel number.  The use of the band pass filters to reduce the noise level gives this estimator better performance than the basic Kay estimator.

Another method to improve Kay's estimator, proposed by Fitz in 1994 [12], is to use the correlation at higher lags instead of only the correlation at lag one.  Because higher lag cross correlation provides more information of the signal in the noise, this estimator can obtain good performance at moderate noise levels.

C. The recommended estimator

A more accurate estimator was proposed by Brown in 2002 [13], called the Iterative Linear Prediction (ILP) method.  It uses iterative processing to reduce the filter bandwidth at each step, which improves the SNR entering the ACCC estimator. 

In this algorithm, a coarse estimate of the frequency is first obtained by the ACCC estimator.  Then, the original signal is shifted to a lower band, according to the initial frequency estimate, and then low pass filtered with a rectangular filter with coefficients hi = 1, i = 0, 1, 2, …, M -1 (we found that using a sinc-based filter got better results).  The low pass filter reduces the out-of-band noise and enhances the SNR.  By applying the ACCC estimator again, the estimated frequency can be obtained with a better accuracy than the initial estimate. The coarse frequency estimate is corrected by the estimated frequency error and the next iteration starts by shifting the original signal with the corrected frequency estimate.  After each iteration, the bandwidth of the lowpass filter is reduced by two.  In this way, the SNR is enhanced by a narrower filter bandwidth, which improves the estimation accuracy at each iteration. The iterative procedure can be terminated when there is no significant improvement detected or the bandwidth of the low pass filter is smaller than the bandwidth of the beat signal. 

The iterative calculation and frequency estimate at iteration k are given by:
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where 
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IV. implementation

In the implementation, we use real SAR data of RADARSAT-1 (the Vancouver scene of [5]) to test the proposed algorithm.  In order to take advantage of spatial averaging and avoid bad estimates from areas with very weak backscatter, we make use of the "Spatial Diversity" concept [1].  In this approach, the whole scene is divided into blocks, the estimators are applied and specific quality measurements are calculated for each block.  In our test, we divide the whole Vancouver scene into 12 range × 19 azimuth blocks, with each of the 228 blocks having 655 range cells and 1024 range lines. 

In estimation using phase increments, we found that the phase coherence is the most appropriate quality measurement. The phase coherence measures the consistency of the phase increments and is defined as:
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Furthermore, as in other DAR algorithms, the baseband Doppler centroid should be measured first using the "Spectral Fit" or "ACCC" algorithms [5].  Then, the baseband Doppler centroid is unwrapped and subtracted from the estimated absolute Doppler frequency and the result is divided by the PRF.  After this, the ambiguity estimate is obtained by a rounding operation.  This reduces the ambiguity estimation to the estimate of an integer, which is more reliable. 

The modified MLBF estimator proceeds by applying the frequency estimators discussed in Section III to obtain the beat frequency, and then averages the results over range.  The absolute Doppler centroid is obtained from the beat frequency estimates using (6).  After processing all the blocks, the blocks with the bad estimates are removed using a threshold on the phase coherence measurement.  Then, a single Doppler ambiguity number can be obtained for the whole scene using a "majority vote".  

V. Results

The results of Doppler ambiguity estimates on the RADARSAT-1 Vancouver scene are shown in Table I.  A number of frequency estimation procedures are evaluated and compared with the existing MLBF algorithm.  The threshold of Phase Coherence > -1 dB is used to remove the bad estimates from all the cases and the following results are based on the same remaining 207 blocks. 

TABLE I.  Comparison of the beat frequency estimators
	Estimator Types
	Mean (PRFs)
	 St. Dev. (PRFs)
	% good estimates 

	Using  FFTs
	-5.743
	1.094
	62

	Kay's
	-5.955
	0.923
	55

	ACCC
	-6.017
	0.901
	57

	FCFB
	-5.876
	0.836
	56

	Higher Lag Corr
	-5.947
	0.753
	63

	 ILP
	-5.900
	0.435
	85


In addition, the histograms of the estimated ambiguity numbers using the different methods are compared in Fig. 1. The histogram of the basic MLBF algorithm in the top left corner are similar to Fig 12.35 in [5], although a more aggressive quality criterion was used to remove more blocks.

Figure 1.  Comparison of histograms of different frequency estimators

Both the table and the histograms show that the MLBF algorithm using each frequency estimator can obtain the correct Doppler ambiguity number, -6, on the average.  However, it is interesting to examine the standard deviations in Table 1, which is a suitable measure of the randomness of the estimates.  It is seen that the methods based on the proposed frequency estimators using phase increments have a smaller standard deviation than the existing algorithm using FFTs, and that the ILP method gives the lowest standard deviation.  It's standard deviation is less than half of the existing MLBF algorithm and it obtains the correct estimates in the highest percentage of blocks. 
VI. Conclusion

This paper applies improved beat frequency estimation methods to the MLBF algorithm to solve the Doppler ambiguity in satellite SAR data.  The proposed method avoids the quantization errors of the existing MLBF algorithm by using phase increments instead of FFTs to measure the beat frequency.  The ILP frequency estimator is recommended as it gives the lowest standard deviation.

The experimental results on real satellite SAR data show that the proposed algorithm gives more consistent estimates than the existing algorithm.  It can achieve correct Doppler ambiguity estimates in a higher percentage of the blocks and its variability is less than half that of the existing algorithm.  In addition, since no FFT operations are required, the proposed algorithm can work with ScanSAR data without resorting to a zero-padding procedure.
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