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ABSTRACT 

Synthetic Aperture Radar (SAR) interferometry (InSAR) uses 
phase differences between overlapping SAR images to  estimate 
terrain height and terrain height changes. In addition, the coher- 
ence magnitude between the images is often used as a measure 
of the quality of the data and the processing. By modeling the 
SAR image data as independent circular Gaussian random vari- 
ates, we develop the maximum likelihood (ML) estimates for 
interferogram phase, coherence magnitude, and the variance of 
the underlying circular Gaussian distribution. We show that the 
ML estimate of interferogram phase is equivalent to the standard 
technique of computing the phase of averaged complex returns. 
The ML estimate of the coherence magnitude depends on the 
estimated interferogram phase. In comparison, the sample co- 
herence magnitude estimate based on amplitudes alone is badly 
biased. We also derive the Cramer-Rao bound for each ML es- 
timate. The ML estimate of interferogram phase is close to this 
bound for moderate to high coherence values. Similarly, the co- 
herence magnitude is close to the bound for values of coherence 
greater than approximately 1/2. For coherence magnitudes less 
than 1/2, the ML estimate of coherence magnitude is biased for 
data samples sizes up to 16 samples. 

INTRODUCTION 

Interferograms are formed by multiplying a synthetic aperture 
radar (SAR) image by the complex conjugate of a second reg- 
istered SAR image. When the images are correlated, the inter- 
ferogram phase measures the difference in slant range distance 
phase (modulo 27r) to the common ground patch illuminated by 
both radar systems. By accounting for the missing 27r quantities 
in the interferogram phase (phase unwrapping), accurate estinia- 
tion of the slant range difference is possible. Through trigonom- 
etry, the estimated slant range difference accurately determines 
the location of pixel ground points (Graham, 1974). The co- 
herence magnitude between the two images is a measure of the 
data quality and is a function the geometry of the interferome- 
ter formed by the two SAR systems, the terrain properties, and 
system parameters such as noise level (Zebker and Villasenor, 
1992; Li and Goldstein, 1990; Bamler and Just. 1993). 

We derive the MI, estimate of interferogram phase, 11; co- 
herence magnitude, p ;  and variance of underlying images, o’ 
assuming a model of constant interferogram phase and indepen- 
dent pairs of data samples. We then compare the ML estimate 

of coherence magnitude with a sample estimate derived from 
the definition of coherence magnitude (Prati and Rocca, 1992: 
Bamler and Just, 1993). The minimumerror bound for unbiased 
estimates is given by the Cramer-Rao (CR) bound which we de- 
rive for each of these quantities. In addition, we compare the 
performance of the ML estimates with the CR bound. Finally, 
we summarize the results of our analysis. 

MAXIMUM LIKELIHOOD ESTIMATION 

Review of Maximum Likelihood Estimation 

Maximum likelihood estimation is a technique for estimating 
constant parameters associated with random observations or for 
estimating random parameters from random observations when 
the distribution of the parameters is unknown. The method 
picks the most likely set of parameters (0) for a given set of 
observations ( z )  by maximizing the probability that the obser- 
vations came from the distribution defined by the parameters. 
To find the correct parameters, the likelihood function f(z I 0) 
(where f(z I 0)  is the density function of the observations con- 
ditioned on the parameters) is maximized by solving 

For distributions which depend on exponential functions, it is 
computationally simpler to find the maximumof the log-likelihood 
function 

By solving for the extrema of the probability density function 
of the observations based on the parameters, the most likely set 
of parameters based on the observations is chosen. 

ML Estimates for SAR Interferometry 

Focused complex SAR images can be characterized as circular 
Gaussian random variables. For interferometry, two images of 
the same area are processed to  extract the interferogram phase 
and coherence magnitude (optionally estimates of the data vari- 
ance can also be made). The samples within each image are 
usually modeled as being uncorrelated since the bandwidth effi- 
ciency of SAR systems is usually quite high. However, individ- 
ual returns in one image are correlated with the corresponding 
returns in the other image. 

The probability density function (PDF) of the correlated re- 
turns can be modeled as the product of the PDF of individually 
correlated values between the two images 
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ML estimates can be derived by setting the derivative of the like- 
lihood or log-likelihood function with respect to the parameter 
of interest to zero and solving for the parameter. The maximum 
Likelihood estimates (Seymour and Cumming, 1994) of interfer- 
ogram phase, coherence magnitude, and variance are 

where: 

a =  

b =  

2b 
pmi = - 7  

a - 2pb 
4N(  1 - 16’)  ’ ‘Jhl = 

returns the phase of the complex argument z ,  

complex magnitudes from the first image, 
complex magnitudes from the second image, 
the number of samples, 
complex conjugate of 2, 

k = l  

The ML estimate of $ is already well known (Rodriguez and 
Martin, 1992; Li and Goldstein, 1990). In general, $ will have 
to be estimated to calculate pml and it appears that both p 
and 11, must be estimated to  calculate U’ .  However, the sample 
estimate of U’ is equivalent to cr i l  if pmi and l l m i  are used for 
the calculation (Seymour and Cumming, 1994). Simplifying the 
ML estimate of U’ aft,er substituting the ML estimates of 11, and 
p into eqn. (8) yields the equivalent estimate 

(9) 

The sample estimate of p may be defined as 

while the ML estimate of p is 

Although, it is not, clear from these equations, the sample esti- 
mate is greater than or equal to the maximum likelihood esti- 
ma.te at all times. 

Proof: 
ps 2 pmr. 

If one value is greater than or equal to the other, then surely 

P: 2 P L  

Substituting the definitions of the estimates in and expanding 
the squared terms: 

RZ+ I’ 4R’ 
C ‘ D  2m 

Interchanging the denominators and simplifying gives 

(R2 + I z ) ( C  + 0)’ 5 4R2CD. 

Subtracting common terms and simplifying gives 

(C - D)’R2 + (C + D)’Z2 0 

Since quadratic forms are always greater or equal to  zero it must 
be true that 

ps 2 Pml. 

Thus the sample estimate of p is greater than or equal to  the 
ML estimate. In the section on simulations we show that the 
sample estimate does not reach the ML estimate unless p is close 
to one. 

CRAMER-RA0 BOUND FOR InSAR 

Review of Cramer Rao Bound 

The Cramer-Rao (CR) bound gives a lower bound on the vari- 
ance of any unbiased estimate (Rice, 1988; Srinath and Ra- 
jasekaran, 1979). An estimate is said to be efficient if it achieves 
the bound. ML estimates achieve the bound asymptotically. We 
calculate the CR bound for each of the interferometric SAR pa- 
rameters : $ , p  and U’, and compare the performance of the 
estimates wit,h the derived bounds. 

The CR bounds are calculated from the inverse of the Fisher 
information matrix J ,  with elements: 

8 In f (  z I 0) 
J113 = -E [ ao,ao, ] ‘ 

The minimum error variance or error covariance of the estimates 
is the corresponding element of the inverse of the Fisher infor- 
mation matrix: 

E[et@,] 2 *,, j .  (13) 
where 

8 = J-’. 

A heuristic way of understanding the bound is to consider the 
distribution of the errors of ML estimates. Assuming the likeli- 
hood function is well behaved, it can be shown that the errors 
of ML estimates are distributed as approximately zero mean, 
normal random variables (Rice, 1988). The average curvature 
of a Gaussian distribution function is the inverse of the variance 
of the distribution. The CR bound identifies the average curva- 
ture of the distribution used to derive the ML estimate as the 
variance of the limiting normal distribution of the errors. 

Calculation of the CR Bounds for InSAR 

The Fisher Information matrix for InSAR is 

Evaluating the expected values yields the following Fisher Infor- 
ma.tion matrix for InSAR: 

The inverse of the Fisher information matrix is: 
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where: 

Simplifying the expression for the inverse matrix yields the CR 
lower bound for the measured quantities: 

Note that the error covariance between $ and both p and cr2 is 
0. 

SIMULATIONS 

Although the CR bound is reached asymptotically by MI, esti- 
mates. when a small number of samples are used or the signal- 
to-noise ratio is low. the CR hound may not be attained. To 
verify the performance of the ML estimates simulations were 
performed. 10,000 realizations of N=8 and N=16 interferomet- 

minimum variance of the estimate and therefore does not take 
into account the wrapping of phase estimates into the principal 
phase domain of 7 to -7. 

The ML estimates of p are fairly close to the CR bound for 
p > 0.5. For p < 0.5, the ML estimate of p is biased and 
t,herefore, the CR bound is not valid. Thf, samplc est,iniat,r of p 
is biased unless the value of LL is close to one. 

The M L  estimate of cr’ is above the bound for most of the 
values of p except when p is close to zero or one. 

CONCLUSION 

The maximum likelihood estimates for the interferometric SAR 
parameters of interferogram phase, $; coherence magnitude,p; 
and image sample variance, U’ were derived under the assump- 
tions of independent observations and constant interferogram 
phase. In addition, the Cramer-Rao bound which defines the 
minimum variance of any unbiased estimate was also calculated 
for each parameter. The performance of InSAR systems using 
pairwise correlated image samples will be well modeled by the 
results of this pa.per. 
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Figure 1: M L  estimate of 41: plot of variance, mean error and 
the CR bound for N = 8  (0 is CR Bound). 
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Figure 2 :  ML estimate of U ' :  plot of variance, mean error and 
the CR bound for N = 8  ( o  is CR Bound). 
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Figure 4: Sample p:  plot of variance, mean error and the CR 
bound for N = 8  (0 is CR Bound). 

Figure 3: ML estimate of p:  plot of variance, mean error and 
the CR bound for N=8 (0 is CR Bound). 
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Figure 6: ML estimate of U':  plot of variance, mean error and 
the CR bound for N=16 (0 is CR Bound). 
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Figure 5: ML estimate of 4:  plot of variance, mean error and 
the CR bound for N=16 (0 is CR Bound). 
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Figure 7: ML estimate of p:  plot of variance. mean error and 
the CR bound for N=16 (0 is CIR Round). 

Figure 8 :  Sample p :  plot of variance, mean error and the CR 
bound for N=16 (o  is CR Bound). 
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