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A Two-Dimensional Spectrum for Bistatic SAR
Processing Using Series Reversion
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Abstract—This letter derives the two-dimensional point target
spectrum for an arbitrary bistatic synthetic aperture radar con-
figuration. The method described makes use of series reversion,
the method of stationary phase, and Fourier transform pairs to
derive the point target spectrum. The accuracy of the spectrum is
controlled by keeping enough terms in the two series expansions,
and is verified with a point target simulation.

Index Terms—Bistatic SAR, point target spectrum, SAR simu-
lation, series reversion, synthetic aperture radar (SAR).

I. INTRODUCTION

THE IDEAL solution for bistatic synthetic aperture radar
(SAR) image formation is a two-dimensional (2-D)

matched filtering process. The time-domain method [1] is a
direct matched filtering of the baseband signal using the exact
replica of the echo signal at each location and thus gives the
optimum reconstruction. However, this method is computation-
ally intensive as it scales with an order ofO((N ×M)2), where
N ×M is the number of pixels in the image.

Efficiency can be improved by performing the focusing in
the frequency domain. The point target spectrum is the basis
for most efficient processing algorithms operating in the 2-D or
range Doppler domain [2]. The individual transmitter and re-
ceiver range histories are hyperbolic, as in the monostatic case.
However, because the transmit and receive range equations are
not the same in the bistatic case, the total range is no longer
a hyperbola. This means that the point target spectrum of the
monostatic and bistatic cases are inherently different and thus,
in general, monostatic algorithms are not able to focus bistatic
configurations.

The point target spectrum for the monostatic case has been
derived in [3], and an approximate point target spectrum for
some bistatic cases has been derived in [4]. In [5], it was
shown how the 2-D spectrum can be modified to change the
leader–follower bistatic case with a constant baseline into an
equivalent monostatic case for which a conventional monostatic
algorithm can be applied. In this letter, the 2-D frequency
spectrum is derived for the general bistatic case, based on the
reversion of a series approximation. A simulation is performed
to illustrate its accuracy.
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Fig. 1. General bistatic configuration of transmitter and receiver at η = 0.

The results of this letter will be useful for developing efficient
bistatic algorithms operating in the 2-D frequency domain or
the range Doppler domain. Several bistatic airborne experi-
ments involving geometries with fixed baseline [6] and [7]
were conducted recently. For these flight configurations, point
targets with the same closest range of approach would have the
same range Doppler histories. Thus, using the same point target
spectrum, we are able to focus a family of points and hence
achieve processing efficiency. In another paper [8], this method
was used to develop an efficient frequency-domain matched
filter.

II. BISTATIC SAR SIGNAL MODEL

A general bistatic SAR geometry is shown in Fig. 1, includ-
ing nonparallel tracks, unequal velocities, and antenna squint.
The time-domain matched filter is constructed by forming the
instantaneous slant range to a point target, referred to as the
range equation

R(η) =RT(η) +RR(η)

=
√
V 2

Tη
2 +R2

Tcen − 2VTηRTcen sin θsqT

+
√
V 2

Rη
2 +R2

Rcen − 2VRηRRcen sin θsqR (1)

where η is azimuth time, V is the velocity of the platform, R
is the instantaneous range to the point target, and the subscripts
T and R refer to the transmitter and receiver, respectively. The
subscript, cen, refers to a target at the center of the imaged area.

Zero azimuth time (η = 0) is defined as the midpoint of the
integration path for the transmitter, as shown in Fig. 1. The
receiver position is shown at the same time. θsqT is the squint
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angle of the transmitter, and θsqR is the squint angle of the
receiver at this time.

After demodulation to baseband, the received signal can be
written in terms of the range time (fast time) τ and azimuth time
(slow time) η

s(τ, η) = ρr

(
τ − R(η)

c

)
waz(η) exp

{
−j2πR(η)

λ

}
(2)

where ρr(·) is the range envelope and the azimuth envelope
waz(·) is determined by the composite antenna pattern.

III. DERIVATION OF THE SIGNAL SPECTRUM

To derive the 2-D spectrum, the first step is to remove the
linear phase and the linear range cell migration (LRCM). This
reason for this step will become apparent when we apply the
series reversion at a later step. After removal of these terms, the
point target signal in the time domain is

sA(τ, η) = ρr

(
τ − R1(η)

c

)
waz(η) exp

{
−j2πR1(η)

λ

}
(3)

where

R1(η) = Rcen + k2η2 + k3η3 + k4η4 + · · · (4)

is the range after removing the linear term and Rcen is the sum
of RTcen and RRcen, and the coefficients

k2 =
1
2!

(
dR2

T(η)
dη2

+
dR2

R(η)
dη2

)∣∣∣∣
η=0

(5)

k3 =
1
3!

(
dR3

T(η)
dη3

+
dR3

R(η)
dη3

)∣∣∣∣
η=0

(6)

k4 =
1
4!

(
dR4

T(η)
dη4

+
dR4

R(η)
dη4

)∣∣∣∣
η=0

(7)

. . .

are evaluated at the aperture center. The derivatives of the
transmitter range are given by

d2RT(η)
dη2

∣∣∣∣
η=0

=
V 2

T cos2 θsqT

RTcen
(8)

d3RT(η)
dη3

∣∣∣∣
η=0

=
3V 3

T cos2 θsqT sin θsqT

R2
Tcen

(9)

d4RT(η)
dη4

∣∣∣∣
η=0

=
3V 4

T cos2 θsqT(4 sin2 θsqT−cos2 θsqT)
R3

Tcen

. (10)

Similar equations can be written for the derivatives of the
receiver range RR(η).

If we keep the terms up to the fourth-order term in (8) and
expand up to the fourth azimuth frequency term, the 2-D point
target spectrum is given by

S ′A(fτ , η)=Wr(fτ )waz(η) exp
{
−j2π (fo+fτ )R1(η)

c

}
(11)

where Wr(·) represents the spectral shape (e.g., bandwidth) of
the transmitted pulse, fo corresponds to the center frequency,

and fτ is the range frequency. Next, we perform an azimuth
Fourier transform (FT). Using the method of stationary phase
[9], azimuth frequency is related to azimuth time by

(
− c

fo + fτ

)
fη = 2k2η + 3k3η2 + 4k4η3 + · · · (12)

where fη is the azimuth frequency. We can derive an expression
of η in terms of fη by using the series reversion (refer to the
Appendix). In the forward function (26), we replace x by η, y
by (−c/(fo + fτ ))fη , and substitute the coefficients of x by the
coefficients of η. Inverting this power series, we arrive at

η(fη) = A1

(
− c

fo + fτ
fη

)
+A2

(
− c

fo + fτ
fη

)2

+ A3

(
− c

fo + fτ
fη

)3

+ · · · . (13)

The rationale for removal of the linear phase term and
LRCM becomes clear at this step. In order to apply the series
reversion directly in (12), we should remove the constant term
in the forward function since the constant term is absent in
the forward function (26). Both the linear phase term and the
LRCM term are removed so that there is no constant term left
after applying azimuth FT to (11).1

Using (13) with (11), we obtain the 2-D spectrum of sA(τ, η)

SA(fτ , fη) = Wr(fτ )Waz(fη) exp
{
− j2πfηη(fη)

}

× exp
{
−j 2π(fo + fτ )

c
R1 (η(fη))

}
(14)

whereWaz(·) represents the shape of the Doppler spectrum and
is approximately a scaled version of the azimuth time envelope
waz(·). To get the 2-D point target spectrum for s(τ, η), we
reintroduce the LRCM and linear phase into sA(τ, η) in (3)

s(τ, η) = sA

(
τ − k1η

c
, η

)
exp

{
−j2πfok1

c
η

}

= ρr

(
τ − R1(η) + k1η

c

)
waz(η)

× exp
{
−j2π

(
foR1(η)
c

+
fok1η

c

)}
(15)

where

k1 =
dRT(η)
dη

∣∣∣∣
η=0

+
dRR(η)
dη

∣∣∣∣
η=0

. (16)

The derivatives (16) at the aperture center are given by

dRT(η)
dη

∣∣∣∣
η=0

= − VT sin θsqT (17)

dRR(η)
dη

∣∣∣∣
η=0

= − VR sin θsqR. (18)

1An alternate approach is to move the constant term to the left-hand side of
(12) and treat the whole term on the left-hand side as y. We would still end up
with the same solution (20).
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TABLE I
SIMULATION PARAMETERS

To derive the 2-D point target spectrum for s(τ, η), we use
the FT skew and shift properties [2]

g(τ, η)←→G(fτ , fη)

g(τ, η) exp{−j2πfκη} ←→G(fτ , fη + fκ)

g(τ − κη, η)←→G(fτ , fη + κfτ ) (19)

where g is a 2-D time function,G is its corresponding frequency
function, and κ and fκ are constants. Applying these FT pairs
to (14) and (15), we arrive at the desired 2-D point target
spectrum

S(fτ , fη) = SA

[
fτ , fη + (fo + fτ )

k1
c

]
. (20)

The accuracy of the spectrum is limited by the number of terms
used in the expansion of (20). In general, we would like to limit
the uncompensated phase error to be within ±π/4, in order to
avoid significant deterioration of the image quality.

IV. SIMULATION RESULTS

To prove the validity of the formulation, a point target signal
is simulated in the time domain and matched filtering is carried
out in the 2-D frequency domain. Processing efficiency is
achieved by focusing point targets in an invariance region with
the same matched filter. The size of the invariance region is
dependent upon the radar parameters and the imaging geometry.
The purpose of this letter is to prove accuracy of the derived
spectrum. Analysis of the extent of the invariance region will
be investigated in a separate paper.

The simulation uses airborne SAR parameters given in
Table I. An appreciable amount of antenna squint is assumed,
as well as unequal platform velocities and nonparallel tracks.
The axes are defined in a right-hand Cartesian coordinate
system with the flight direction of the transmitter parallel to the
y direction and z is the altitude of the aircraft. The oversampling
ratio is 1.33 in range and azimuth. Rectangular weighting is
used for both azimuth and range processing.

If we keep the terms up to a fourth-order term in (20) and
expand up to the fourth azimuth frequency term, the 2-D point
target spectrum is given by

S(fτ , fη)=Wr(fτ )Waz

(
fη+(fo+fτ )

k1
c

)
exp {jφ(fτ , fη)}

(21)

where the phase is given by

φ(fτ , fη)=− 2π
(
fo+fτ

c

)
Rcen

+ 2π
c

4k2(fo+fτ )

(
fη+(fo+fτ )

k1
c

)2

+ 2π
c2k3

8k3
2(fo+fτ )2

(
fη+(fo + fτ )

k1
c

)3

+ 2π
c3

(
9k2

3 − 4k2k4
)

64k5
2(fo+fτ )3

(
fη+(fo+fτ )

k1
c

)4

. (22)

The magnitudes of the cubic and quartic terms in (22) are

∆φ3 ≈
∣∣∣∣∣2π

c2k3
8k3

2f
2
o

(
Ba

2

)3
∣∣∣∣∣ (23)

∆φ4 ≈
∣∣∣∣∣2π

c3
(
9k2

3 − 4k2k4
)

64k5
2f

3
o

(
Ba

2

)4
∣∣∣∣∣ (24)

where Ba is the Doppler bandwidth. For this simulation case,
Ba = 150 Hz, k2 = 1.31 m/s, k3 = 0.0146 m/s2, and k4 =
0.000184 m/s3. The phase component ∆φ3 is more than π/4
and ∆φ4 is much less than π/4. Therefore, it is sufficient to
retain only terms up to the cubic term in the phase expansion
(22) for accurate focusing in this radar case. Matched filtering is
performed by multiplying the 2-D spectrum of the point target
by exp(−jφ(fτ , fη)).

The point target spectrum after matched filtering has a
2-D envelope given by Wr and Waz in (21), as shown in
Fig. 2(a). Note that the spectrum has a skew as a result of
the range/azimuth coupling. This results in skewed sidelobes as
shown in Fig. 2(b). However, in order to measure image quality
parameters such as the 3-dB impulse response width (IRW) and
the peak sidelobe ratio (PSLR), it is convenient to remove the
skew by shearing the image along the range time axis by the
amount

δτ = −
(
VT sin(θT) + VR sin(θR)

c

)
η. (25)

The deskewed sidelobes are seen in Fig. 2(d). The deskewing
operation is equivalent to deskewing the spectrum, as shown in
Fig. 2(c).

The quality of the focus can be examined using the one-
dimensional expansions shown in Fig. 3. The excellent focus
is demonstrated by the IRW, which meets the theoretical limits
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Fig. 2. Point target spectrum and image before and after the shear operation.
(a) Spectrum after matched filtering. (b) Point target after matched filtering.
(c) Spectrum after shear operation. (d) Point target after shear operation.

Fig. 3. Measurement of point target focus using a matched filter derived from
the new 2-D point target spectrum.

in range (1.184/1.33 = 0.89) and in azimuth (1.188/1.33 =
0.89) for rectangular weighting. Furthermore, the sidelobes
agree with the theoretical values of −10 and −13.3 dB for
the integrated sidelobe ratio (ISLR) and PSLR, respectively. In
addition, the symmetry of the sidelobes is another indication of
correct matched filter phase.

V. CONCLUSION

The 2-D point target spectrum for the general bistatic case
is developed by expressing the bistatic range equation as a
power series and using the method of series reversion to express
azimuth time as a function of azimuth frequency during the
azimuth FT. This results in a power series expression for the
spectrum of the point target, whose accuracy is controlled by
the degree of the power series. The accuracy of the derived
spectrum is confirmed using a simulation where the point target
is simulated in the time domain, then compressed using a 2-D
matched filter derived from the spectrum.

The method of series reversion is also applicable to mono-
static stripmap and spotlight situations where the simple hyper-
bolic range equation does not hold.

APPENDIX

SERIES REVERSION

Series reversion is the computation of the coefficients of
the inverse function given those of the forward function (26).
For a function expressed in a series with no constant term
a0 = 0

y = a1x+ a2x
2 + a3x

3 + · · · (26)

the series expansion of the inverse function is given by

x = A1y +A2y
2 +A3y

3 + · · · . (27)

Substituting (27) into (26), the following equation is obtained:

y = a1A1y +
(
a2A

2
1 + a1A2

)
y2

+
(
a3A

3
1 + 2a1A1A2 + a1A3

)
y3 + · · · . (28)

By equating terms, the coefficients of the inverse function are

A1 = a−1
1

A2 = − a−3
1 a2

A3 = a−5
1

(
2a2

2 − a1a3

)
. . . . (29)

The formula for the nth coefficient is given in [10], as summa-
rized in the handbook [11].
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