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Precision SAR Processing Using Chirp Scaling

R. Keith Raney, Fellow, IEEE, H. Runge, Richard Bamler, Ian G. Cumming, and Frank H. Wong

Abstract—A space-variant interpolation is required to com-
pensate for the migration of signal energy through range res-
olution cells when processing synthetic aperture radar (SAR)
data, using either the classical range/Doppler (R/D) algorithm
or related frequency domain techniques. In general, interpo-
lation requires significant computation time, and leads to loss
of image quality, especially in the complex image. The new chirp
scaling algorithm avoids interpolation, yet performs range cell
migration correction accurately. The algorithm requires only
complex multiplies and Fourier transforms to implement, is in-
herently phase preserving, and is suitable for wide-swath, large-
beamwidth, and large-squint applications. This paper de-
scribes the chirp scaling algorithm, summarizes simulation re-
sults, presents imagery processed with the algorithm, and re-
views quantitative measures of its performance. Based on
quantitative comparison, the chirp scaling algorithm provides
image quality equal to or better than the precision range/
Doppler processor. Over the range of parameters tested, image
quality results approach the theoretical limit, as defined by the
system bandwidth.

I. INTRODUCTION

ECENT advances in synthetic aperture radar (SAR)

image analysis impose increased requirements on the
precision of image products, particularly the fidelity of
the complex image. Pertinent applications include SAR
interferometry, quadrature polarimetry, complex speckle
reduction filter techniques, and complex signal analysis
for system calibration.

The performance and precision of SAR processing
techniques are summarized in [1]. The most popular SAR
processing algorithm is the range/Doppler (R/D) tech-
nique, and variations of it. This method is efficient, and
in principle, solves the problems of azimuth focusing and
range cell migration correction (RCMC). The main dis-
advantages of R/D processors are that: 1) the secondary
range compression cannot easily incorporate azimuth fre-
quency dependence, and 2) RCMC requires an interpo-
lator. To achieve accurate results, the kernel of the inter-
polator must have range-varying coefficients, and should
span many samples. In practice, this leads to a less than
ideal accuracy/efficiency tradeoff. Most processors use 4-
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8 point kernels, which favors the efficiency side of the
tradeoff: precision SAR processing loses out in the bar-
gain.

Several researchers [6], [17] have examined SAR pro-
cessing algorithms based on the seismic wave equation
formulations [22], [5]. Wavenumber domain methods
have the advantage of dealing directly with the natural
polar coordinate system arising from wave propagation,
and achieve most signal processing operations in the two-
dimensional frequency domain with a relatively simple
phase multiply. The dominant disadvantage of wavenum-
ber domain approaches is that an interpolator is needed to
match the range-dependent RCMC parameter variations,
either for the Stolt change of variables in the two-dimen-
sional frequency domain [5] or for the residual RCMC in
the range/Doppler domain [17].

The contribution of the present work is a SAR process-
ing algorithm that retains reasonable efficiency, while at
the same time it eliminates approximations arising from
the truncated interpolation kernel normally used to achieve
RCMC. The method is the chirp scaling algorithm [20],
also known as the differential range deramp or DRD al-
gorithm [8]. The particular approach used in our chirp
scaling algorithm produces excellent radiometric and geo-
metric results, and is inherently phase preserving.

The analytical foundation for the treatment is presented
in Section II. The chirp scaling algorithm is described in
Section III. Critical analysis of image quality based on
simulated signals is outlined in Section IV, and image
quality based on actual SAR data is described in Section
V. Following comments on implementation issues in Sec-
tion VI, conclusions appear in Section VII. Three Appen-
dixes are included that provide more detailed considera-
tion of the performance of the chirp scaling approach.

II. PROBLEM STATEMENT

The data available to a SAR processor are an ensemble
of two-dimensional dispersed signals. Each signal con-
sists of the record of reflections from an individual scat-
terer in the illuminated scene. Scene coordinates, with re-
spect to the radar motion vector, are azimuth (scatterer
location along the vector) and range (scatterer orthogonal
*distance from the vector). Signal coordinates are similar,
but include a subtle yet essential difference: range in the
signal domain is the instantaneous distance from the an-
tenna to each scatterer. In general, range is not orthogonal
to azimuth in signal space.

The task of the processor is to implement a filter,
matched in both the range and azimuth directions, to fo-
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cus the signal data. The design problem is challenging
because: 1) the range and azimuth coordinates are coupled
in the signal impulse response (range curvature or range
cell migration), and 2) the amount of range cell migration
depends on range.

A. Signal Impulse Response

In signal space, after demodulation, the response from
a point scatterer (Fig. 1) located at range r and at azimuth
time ¢ = 0 for azimuth antenna weighting a(-) and trans-
mitted signal envelope so(-) is

pp(t, t; r) = a(t, r)s, <'r - ﬁ:,_r))

- exp {—j 3 ke r)} )
where ¢ is time along the radar flight path, 7 is delay time
in the (slant) range direction, c is the speed of light, and
A is the radar wavelength. The purpose of the pp(-) no-
tation is explained below. The time-varying distance from
the radar to the scatterer is given by the range delay term

R@t; r) = vr* + V2(r)t2 ?2)

where V(r) is the relative velocity proportionality param-
eter between the scatterer and the radar, scaled to account
for the curved orbit, and earth curvature and rotation. For
narrow beam systems operating relatively close to the ob-
served scene, such as for most aircraft radars, the relative
velocity is virtually equivalent to sensor speed and not
dependent on range, but for a more generalized geometry,
such as the satellite SAR case, the velocity parameter V(r)
is a function of range [14], which needs to be included
for precision processing. Range delay in (2) is with re-
spect to the scatterer’s range r of closest approach, as-
sumed to be observed by the radar at zero azimuth time 7.

The range/azimuth dependence of the range delay term
impacts both the phase and the envelope location of the
signal impulse response (1). SAR focusing in azimuth is
done by matching the azimuth phase modulation imposed
on all signals through the systematic range changes from
(2). If the change in range of the focused pulse is larger
than the range sample spacing, then the signals follow
loci that cross range pixel boundaries in signal space. This
phenomenon is known as range cell migration. In order
for the processor to compress the azimuth dimension of
the signal, either the filter must follow the curve of the
signal locus (which requires a time-domain interpolation)
or the range delay locus must be straightened (which is
the task of the RCMC procedure). Once RCMC has been
done, then the azimuth filter requires only a simple one-
dimensional operation.

B. Two-Dimensional Frequency Domain

The range cell migration from one scatterer, as shown
in Fig. 1, could be straightened by warping the signal
space or, equivalently, by changing the range scale of the

787

SAR RAW DATA
/ (SIGNAL SPACE)

N

1/PRF

S _,."
RELATIVE *® -~
RANGE /\

DELAY .-

ole
N

R(tr)

FLIGHT PATH

POINT SCATTERE|
(OBJECT SPACE)

Fig. 1. Transformation of signal history from object space into signal
space.

domain as a function of azimuth time ¢ to counteract the
delay term of (2). However, if there are several signals
from different azimuth locations simultaneously present,
as must be true in a practical case, then their loci overlap.
Hence, it is impossible to correct all range cell migrations
by a simple range-proportional scaling in the signal do-
main.

In principle, application of a two-dimensional linear
time-domain filter over the received signals simultane-
ously could perform compression and correct range cell
migration [23], although a new filter would be required
for each range cell. Implementation in the time domain
requires many more operations, resulting in a compara-
tively slow processor. We confine our discussion to trans-
form domain techniques.

The two-dimensional Fourier transform of the signal
impulse response has the form

PP(f, f3 1) ~ AC)So(*) exp {je(f,, f; N} ()

where the capital letters PP indicate the Fourier transform
of the range and azimuth functions pp, respectively, and
(f;, f) are the frequency variables corresponding to range
time and azimuth time (7, 1), respectively. The functions
A(-) and Sp() are the transforms of the antenna weighting
and the pulse envelope. Using a Taylor series expansion
on range frequency, the phase term of the generic two-
dimensional signal transform has leading terms

(fs 50 = 0o i) + (£ D,
+ofiDfi+ - @)

Each phase term in (4) is significant in the development
of our algorithm. Higher order terms in general are not
significant in most radar specific applications.



788 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 32, NO. 4, JULY 1994

The first term of (4), constant in range frequency f,,
carries the phase information required to focus the data in
the azimuth direction. The second phase term of (4), lin-
ear in f,, carries both the correct range position of the
scatterer (desired) and the range cell migration (unde-
sired), which is to be compensated. The third phase term,
quadratic in f,, contains a dispersion of the range pulse
that becomes larger with increasing squint angles. Con-
ventional means for its correction include a change of
variables [22] in active seismic work, and adjustment of
the range FM rate [10] used in SAR, in which case it is
known as secondary range compression (SRC). Range/
Doppler algorithms are not able to adjust the SRC term
¢, with respect to Doppler f or range r without increasing
the computational load. The desirability to take the Dopp-
ler dependence of the SRC term into account has been
noted in the literature [7], [24], [21].

The range cell migration term is dependent on range.
Note that range is not available as an independent param-
eter in the two-dimensional frequency domain. When
there are several signals from different range locations si-
multaneously present, as is generally the case, then their
transforms overlap. A fixed value of the range parameter
corrects range cell migration for one specific range posi-
tion, but signals from all other ranges have only an ap-
proximate correction applied. Thus, it is not possible to
correct fully for range cell migrations using linear filters
in the two-dimensional transform domain when no other
RCMC stages are used.

C. Range/Doppler Domain

In the range/Doppler domain, which is the ‘‘natural’’
coordinate system for this class of coherent radars, there
is a unique and single-valued (one-to-one) relationship
between the geometry of each and every illuminated scat-
terer and the signal histories pP(7, f) available. [The util-
ity of the lower case/upper case naming convention for
two-dimensional functions is now clear, here denoting
time domain for the first variable (7), and frequency do-
main for the second variable (f).] In the range/Dopper
domain, multivalued (many-to-one) superposition of dif-
ferent range cell migrations is eliminated in azimuth, and
access to the range parametric variation is retained. Con-
ventional R/D SAR processors rely on this single-valued
property to realize RCMC.

An analytic expression for the range/Doppler form of
the signal impulse response cannot be derived for arbi-
trary pulse modulation. The expression is known, how-
ever, for the case in which there is a large time-bandwidth
phase modulation on the transmitted signal. We assume
that the radar uses chirp modulation, e.g., linear FM (fre-
quency modulation), of rate K. The baseband signal im-
pulse response takes the more specific form

By application of the principle of stationary phase (e.g.,
[4]), it may be shown (Wong, unpublished notes and
{15]), within an arbitrary complex constant C, that the
corresponding range/Doppler transform may be written

A 2
pP(r, f;r) = Ca <—;_flﬁ> 5o (T - ;Rf(.ﬂ r)>

2 2
- exp {—j'rrK,(f; r) <T - ;Rf(f; r)> }

dxr N n2
'“p{777[1_<2wn>] ©

where the parameter V(r), in general, includes a small
range dependence due to orbit curvature, combined with
Earth curvature and rotation. For the derivation of (6),
V(r) is assumed to be constant in the neighborhood of each
stationary point (Appendix B). :

D. Range Curvature Factor

The range/Doppler expression of (6) introduces two
new functions. The time domain range delay (2) carries
over into the range/Doppler domain as

r

RAf5 D) = ———— @
- (p%)
(5

which has the functional form

Ri(fi ) = rll + C(f)] ®

where

C(H = -1 ®

' (55)
2V(r)

is the curvature factor, which describes the Doppler fre-
quency-dependent part of the signal trajectory. The cur-
vature factor C(f) is a strong function of f, but only
mildly dependent on range r. (The body of this paper treats
this factor as locally constant with respect to range. Ex-
tension of the work to range variation is covered in Ap-
pendix B.)

The term Ry(-) (7) describes range migration in the
range/Doppler domain through the position shift in the
range signal envelope sy(-) of (6). The delay is a function
of both Doppler f and scatterer range r, and is single val-
ued at every point. Thus, there is a family of range/Dopp-
ler loci that describe the distribution of range cell migra-
tions over the entire range/Doppler plane, as suggested in
Fig. 2.

2
pp(t, t; r) = a(t) s, <T - %R(t; r)> exp {—er (T - %R(t; r)> I exp {—j i;— R(z; r)}. o)
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Fig. 2. Range cell migration in the range/Doppler domain.

E. Range Phase Distortion
The second new function of (6) is the effective FM chirp
rate in range,
K

2 2V
1+ Kr? 3
- (56)
2V(n)
which has the functional form
1 1
K n _E+ ra(f; r) (11)
where ( f >2
2\ 2V(r
alf;n=—73 (12)

[-GET

is the range distortion factor. This factor, which leads to
range defocus if not compensated, has a strong depen-
dence on Doppler f, but only a weak dependence on range.
The range distortion, ra( f; r) in (11), when matched in
the processor, achieves so-called secondary range
compression (SRC) [10], [24], [1]. Note that the range
distortion is not a function of the FM rate K: rather, it is
a function of the geometry. Range distortion is a direct
consequence only of the lack of orthogonality between
‘‘range’’ and ‘‘azimuth’’ for signal components away
from zero Doppler, and applies to any form of range mod-
ulation, not just to linear FM.

III. CHIRP SCALING ALGORITHM

The chirp scaling algorithm is designed around curva-
ture equalization, so that by the time the signal is trans-
formed to the two-dimensional frequency domain, all of
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the range cell migration trajectories have been adjusted to
have congruent loci, equivalent to the trajectory of a scat-
terer at the selected reference range r;. As all of the re-
sulting range migration trajectories are single valued in
the two-dimensional frequency domain, then RCMC may
be completed by a phase multiplication that is known and
single valued at each and every point.

Curvature equalization is done simply, yet accurately,
by application of a phase multiplication in the range sig-
nal/Doppler domain. If the radar uses a large time-band-
width signal modulation having a dominant linear FM
characteristic, then there exists a unique solution. The re-
quired function, which depends on Doppler frequency, has
quadratic phase modulation in range, whose FM rate is
very small compared to the FM rate of the range pulse
modulation. The equalizing phase function causes a range/
Doppler-dependent change in range scale over signal
space. Secondary range compression may be imple-
mented by using a range compression filter whose rate is
(mildly) Doppler frequency dependent.

The chirp scaling algorithm uses operations in both the
range/Doppler domain and the two-dimensional fre-
quency domain. Rather than completing range compres-
sion first, the chirp scaling algorithm starts and finishes
with azimuth transforms; range operations are embedded
in the middle. The logical flow diagram of the chirp scal-
ing algorithm is shown in Fig. 3. Note that only multi-
plications and Fourier transforms are required. There are
no interpolations needed for complete RCMC. As shown
in the figure, the output file consists of a single look com-
plex (SLC) image. In the following, we discuss the key
steps in the algorithm: issues such as detection and mul-
tilooking not specific to this algorithm are not featured in
the development. The canonic form of the basic chirp
scaling operation as it is known in classical filter analysis
is outlined in Appendix A.

A. Azimuth FFT

Having available a block of raw data, the first step is
an FFT in the azimuth direction, which carries the signal
data to the range signal/Doppler domain. At this stage, it
is helpful to distinguish between the ‘‘range (image)/Dop-
pler’’ domain and the ‘‘range signal/Doppler’’ domain.
Since the signal is characterized by a large time-band-
width product, there is a degree of freedom available in
the signal domain that is not available in the compressed
range (image) dimension. The algorithm exploits the lin-
ear FM signal structure that exists only prior to range
compression.

The azimuth FFT imposes two extra corner turns on the
processing budget of this algorithm when compared to the
conventional R/D approach. However, with the large
computer main memories available today, it is possible to
hold the data for a whole processing block and access them
easily in two dimensions.

Following the azimuth FFT, the signal is described by
(6) above, which serves as the starting point for the pres-
ent development.
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Fig. 3. Flow diagram of the chirp scaling algorithm.

B. Chirp Scaling Phase Multiply

While in the range signal/Doppler domain, the data ar-
ray is multiplied by a function whose phase is chosen so
that the range migration phase term of each and every
scatterer is equalized to that of the reference range. The
spatial loci of the resulting range curvatures are illustrated
in Fig. 4, shown as they would appear after range focus-
ing. In principle, the choice of the reference locus is not
critical, and even may be outside the swath being imaged.
The time locus of the reference range in the range signal/
Doppler domain is

() = 2rgll £ CEAL (D)
If the problem is posed with an unknown FM rate for the
quadratic phase multiply, then elimination of the range-
varying curvature terms leads to a unique solution [16].
The required chirp scaling multiplier is [20]

®,(7, f; Ires) = exp { —TK(f; T'eet) CLF) [T — Toes (F)F}.
(14)

The chirp scaling parameter C( f) is the curvature factor
of (9). The effective FM rate K,( f; r.¢) includes Doppler
variation for SRC, although the range parameter must be
set to a constant ¢, which is an approximation of minor
consequence (Appendix C). All parameters of the first
phase multiplier function &,(-) are single valued and
known over the range signal/Doppler domain.

Multiplication by ®,(-) causes a very small range and
Doppler-dependent deformation of each range chirp phase
structure so that the phase centers of all signals follow the
same reference curvature trajectory:

Range

Rfifu) “ Tt + 1

Ri(fira) :
‘\ i
| -
7
Frel ‘ Ri(firg) - Ry(f0) - Mg + 1
i
=

>
Doppler

Fig. 4. Equalized range curvatures resulting from the chirp scaling algo-
rithm.

(f) = % [r + res GO (1s)
Note, however, that the positions of the chirp envelopes
so have not been shifted.

The chirp scaling function of (14) is exactly linear FM
(i.e., a quadratic function of 7) only if: 1) the radar pulse
is linear FM, and 2) the azimuth FM rate parameter V(r)
is constant with range. In practice, V(r) is range depen-
dent, and the range chirp may not be perfectly linear.
These situations may be handled directly in the algorithm
by inclusion of a matching nonlinear component in the
chirp scaling phase multiply (Appendix B).

C. Range FFT

The effect of the chirp scaling phase multiply is evident
after application of the range FFT. The result is the two-
dimensional frequency domain expression

N __\f _ fr
PP(f, f) = @“< _2V2(r)) s"( K1 + cs)>

4 N 2412
-cxp{—jTr[l - mr—)

= JOs(f; r)}

) . 12 }
P {“" K(f: red[1 + G

4
- exp {—j T Hr + r,efcs(f)]} (16)

where

4
Ou(fir) = c—’{ K(f: red 1 + CUOIC(F)(r = red.
an

Each phase term of (16) has a direct interpretation. The
first phase function is the azimuth modulation, which is
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constant with respect to the range (frequency) variable. It
includes a parametric dependence on range r (17) which
is matched in the range/Doppler phase multiplier ®; as
discussed below.

The second phase term of (16), quadratic in range fre-
quency f,, is the effective range chirp modulation, whose
initial FM rate K has been modified by the range curva-
ture, and modified even more by the Doppler-dependent
FM rate of the chirp scaling applied during the previous
step. The effective FM rate parameter may be rewritten
in the form

1 1
K(f repll + C(H] K[ + C(f)]

Ot(f; rref)

1+CH™

which shows that the chirp scaled FM rate (the first term
on the right-hand side of the equation) and the geometric
phase distortion (the second term) are separable and ad-
ditive. The chirp scaled FM rate is single valued and
known over the two-dimensional frequency domain, and
may be exactly compensated (discussed in the following
section). The second term in (18) is proportional to target
range, and therefore, when several signals are present si-
multaneously, it is multivalued in the frequency domain.
However, range-dependent variations are very small when
compared to the magnitude of the FM rate term so that
use of a constant r in this term is satisfactory. Variations
due to the Doppler frequency parameter f may be matched
in this domain.

The third phase term of (16), linear in range frequency
f+» carries the correct range position r of each scatterer as
well as its range curvature. Thanks to the previous chirp
scaling multiply, however, the relative range curvature is
Ry(f; rep), which is the same value for all ranges; hence,
it is single valued over the two-dimensional frequency do-
main.

(18)

27
®3(7, f) = exp i—j Sl [1 - [1

D. RCMC, Range Compression, and SRC Multiply

Range cell migration correction (RCMC) and range fo-
cus, including secondary range compression (SRC) with
its Doppler-dependent variation and compensation for the
chirp scaling change in FM rate, may be done with a phase
multiplication by a function whose value is known at each
point on the two-dimensional space. The phase multipli-
cation is

Do(frs f Te) = €xp {"ﬁf

f2
K(f; repl + Cs(f)]}

4
- exp {ﬂ' {ﬁr.efcs(f)}. (19)
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The first factor achieves range focus including SRC. The
RCMC is done by the second factor. Since it corrects the
dominant range curvature effects in a satellite SAR ge-
ometry, it is known as the bulk RCMC. (Likewise, bulk
azimuth compression could be done at this stage, although
for this discussion, we choose to perform all azimuth fo-
cusing operations at one time, as described below.) Note
that C,( f) is a function of V(r), as shown in (9).

E. Range IFFT

With near perfect phase compensation of all range
modulation, the range inverse Fourier transform (IFFT)
collapses to the focused range envelope Sy(-) at the cor-
rect range position 2r/c, leaving only azimuth phase
terms. Letting the subscript ¢ denote that the output pulse
in the associated direction has been compressed, we find

_ __N _z2r
pcP(1, f) = Ca < 2V2(r)> So (T c >

4n N 2712
B A L Y7o

—JOs(fi T )}
which is to be matched by the third and final phase mul-
tiply.

(20

F. Azimuth Filter and Phase Residual

The first phase term of (20) is the normal Doppler mod-
ulation. It is this term that must be matched to focus each
signal in azimuth. It is a single-valued two-dimensional
quantity known over the domain. The final phase term,
given by (17), has a known value over the range/Doppler
domain [16], [20]. It is a residual generated by the orig-
inal chirp scaling phase multiply. The required compen-
sation is the conjugate of (20), so that the phase multiplier
needed to complete the algorithm is given by

)\f 2172
(2 Vir = Tc/2)>] ] +0a(f; ')}

where scatterer range r and the range time coordinate 7
are interchangeable since range compression and RCMC
have been completed at this stage. Phase compensation
may be allowed to vary with range in the range image/
Doppler domain, and thus to accommodate satellite or
other nonrectangular viewing geometries, as justified in
Appendix B. Also, an additional phase compensation
could be used at this point to correct for phase error caused
by range filter mismatch due to range invariance, for ex-
ample. (See Appendix C.)

In the range image/Doppler domain, azimuth fre-
quency-dependent bandpass and filter operations may be
introduced, such as weighting and look extraction.

@n
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G. Azimuth IFFT

The algorithm is completed by an azimuth inverse FFT.
Noting that the compressed azimuth impulse response is
the suitably scaled and transformed envelope A(f) of the
antenna weighting [9], the image impulse response
pcpe (T, b for zero azimuth offset may be written

pCpC(T, t) = @So(‘r - 27’/C)A(t). (22)

H. Comment

In (16), the azimuth reference frequency was chosen to
be zero for simplicity. The algorithm is valid when non-
zero azimuth reference frequency is used, which is the
case for the experiments reported below. As is true for
most SAR processors, for squinted data, the Doppler cen-
troid frequency of the azimuth antenna pattern must be
used to unwrap the frequencies in the compensations used
to rectify signal and image domain. This requires knowl-
edge of the integer and the fractional part of the Doppler
ambiguity.

IV. IMAGE QuALITY: POINT TARGET SIMULATIONS

In order to qualify the chirp scaling (CS) algorithm for
anticipated requirements of satellite SAR processing, one
of the most demanding of the new sensors, RADARSAT
[18] was selected for testing. RADARSAT combines high
resolution with wide swaths in various modes, and can
exhibit large variations in Doppler centroid over the
swath. In this section, the results of simulation runs using
RADARSAT parameters with the CS and R/D algorithms
are presented. The parameters of RADARSAT relevant to
the simulation are shown in Table I.

A. High-Resolution/Wide-Swath Tests

High resolutions provide a demanding test for an al-
gorithm because of increased focusing sensitivities. For
this test, RADARSAT’s Fine-Resolution mode was used,
with resolutions of 7 m. Wide swaths provide a demand-
ing test because range-dependent parameters undergo their
largest changes, and processors do not always cope with
these range variations accurately. In the context of the CS
algorithm, the wide swath introduces the largest nonlin-
earity in the frequency of the range perturbation function,
especially with the lowest incidence angle beams where
the rate of change of V(r) is the largest. To test this as-
pect, RADARSAT’s Wide-Swath mode was chosen, with
a 150 km ground range swath width.

In each case, single-look complex (SLC) images were
studied to yield the most sensitive measurement of image
quality parameters. Near and far ranges were simulated to
get the maximum range variations. Also, squint angles of
0°, 4°, and 8° were simulated to demonstrate the robust-
ness of the algorithm with respect to squint.

In each mode, the degree of polynomial required to fit
the range chirp scaling function was determined experi-
mentally. This was done by finding the error in the fit over
the whole swath width using different degrees in the

TABLE I
TYPICAL SYSTEM PARAMETERS USED FOR SIMULATION TESTS
(Modes Refer to Those of RADARSAT)

Fine Resolution Wide Swath

Parameter Mode Mode Units

Radar frequency 5.3 5.3 GHz
Range sampling rate 32.2 12.9 MHz
Chirp FM rate 0.70 0.27 MHz/pusec
Chirp duration 43 43 pusec
Ground range swath width 50 150 Km
Change in azimuth focus

parameter V*(r) from near

range to far range 0.24 0.70 %

polynomial, and selecting the lowest degree which would
introduce negligible effects in subsequent processing of
the SAR data. This turned out to be a cubic polynomial
in each case.

For each test, an initial point scatterer was placed at the
center of the swath to serve as an image quality reference.
All range-variant processing parameters were tailored to
this reference, as it would be optimally focused. Like-
wise, for the CS algorithm, the differential RCMC would
be zero for this case. Image quality parameters of all other
signals were measured against those for the reference.
Simulated scatterers were placed at the near and far swath
edges, so that the most severe differential range cell mi-
gration was simulated. The entire swath was processed in
one block, without the use of parameter invariance re-
gions which are a source of error in many algorithms.

The simulated signals were compressed, and their im-
age quality parameters were measured. The key parame-
ters are impulse response width (IRW), geometric regis-
tration, phase angle, peak magnitude, maximum sidelobe,
and integrated sidelobe ratio (ISLR). No weighting was
used in either the range or azimuth directions so that
weighting would not be a factor in the algorithm compar-
isons, and so that the most sensitive measurements could
be made.

B. Simulation Results

Experimental results for the Fine-Resolution SLC and
Wide-Swath SLC modes and at the minimum and maxi-
mum incidence angles are summarized here. At a squint
of 8°, and using the Doppler centroid as the reference
frequency, the following results were obtained.

1) The range IRW broadening was less than 0.7%
compared to the resolution of the reference. Contributing
factors to the broadening were measurement error, and the
range filter mismatch due to its range-invariance assump-
tion in the implementation. The broadening is less than
has been obtained from any other wide-swath, strip-mode
SAR processing algorithm, including the R/D algorithm.

2) The azimuth broadening of all responses was less
than 0.4 % compared to the resolution of the reference tar-
get.

3) The range and azimuth registration errors were too
small for measurement in all experiments.
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Fig. 5. Contour plots of impulse responses (simulated signals) for the
range/Doppler and the chirp scaling algorithms.

4) The phase error for all responses, after correcting
for the range filter mismatch, was less than 0.5°.

5) The maximum sidelobe ratio was less than —13 dB,
as expected for the Fourier transform of a rectangular
window. The one-dimensional ISLR was less than —10
dB.

Fig. 5 is an image domain contour plot of a typical
compressed test signal for three angles of squint: 0°, 4°,
and 8°. For purposes of comparison, the impulse re-
sponses of a precision R/D processor are also shown. The
R/D processor used an eight-point RCMC interpolator and
included range-time, azimuth-frequency-independent sec-
ondary range compression. In addition to improved res-
olution, the sidelobe structures of the contour plots in Fig.
5 show that the phase matching of the chirp scaling al-

gorithm is superior to that of the R/D algorithm, espe-
cially as squint increases.

C. Doppler Centroid Variation Tests

Finally, the effects were studied of choosing the azi-
muth reference frequency to be different from the Doppler
centroid of the simulated signal array. The ideal reference
frequency f.; would be equal to the Doppler centroid fre-
quency fpc at each range. However, due to the fact that
Doppler centroid frequency can vary with range and that
fet is range invariant in the implementation, in general a
difference exists between f.r and fpc as a function of
range. The maximum difference is one half the maximum
PRF excursion between near and far range, plus 0.2 PRF
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allowed for Doppler centroid estimation error. (The max-
imum excursion is 2.3 PRF’s for RADARSAT’s Wide-
Swath Mode at 4° squint.) The value of f,.; usually is cho-
sen to be the midrange fj¢, in which case the maximum
error between the two frequencies at either edge of the
swath is 1.35 PRF’s. The squint angle of 4° was chosen
to simulate a realistic RADARSAT case.

Experimental results when the reference azimuth fre-
quency f,¢ differed by as much as 1.4 PRF’s from the
Doppler centroid fpc show an increase in residual phase
error to 4°. All other image quality parameters were com-
parable to the reference experiments. The phase error was
found to be a function of the squint angle, the difference
between f,¢ and fpc, the difference between the scatter
range and the reference range, and the rate of change in
V*(r) with range time. A 4° phase error should be ac-
ceptable for most applications; this could be compensated
easily if required.

V. IMAGE QuaLITY: SAR EXAMPLES

To test the image quality properties of the CS algo-
rithm, a scene from Seasat was processed using both the
CS algorithm and the precision R/D algorithm. Seasat was
selected over ERS-1 because its larger synthetic aperture
provides a more demanding test for the algorithms. Each
image was produced as an SLC image file. The data were
magnitude detected, and then groups of four adjacent azi-
muth pixels were summed to produce images with a square
aspect ratio, a spatial domain process with statistical re-
sults similar to those of conventional frequency-selective
four-look processing. The image processed with the CS
algorithm is shown in Fig. 6. Based on appearance, there
is no distinguishing difference noted between it and the
corresponding R/D processed scene (not shown). No ar-
tifacts were observed in either image; stripes, banding,
echoes, and other types of unwanted features are not ev-
ident. The radiometry is continuous in both the range and
azimuth directions. From this, it is concluded that as far
as visual image quality is concerned, the CS algorithm is
at least comparable to the reference R/D algorithm.

A radiometric comparison was done using 256 X 256
chips extracted from the two image files. The mean,
standard deviation, and their ratio were computed. The
results from the two algorithms were within 0.2% of each
other. The shapes of the two histograms were essentially
identical. Likewise, the range and azimuth spectra of im-
ages from the two algorithms were found to be compara-
ble.

From the simulation results of the previous section, the
detailed impulse response performance of the CS algo-
rithm should yield better results than those of a precision
R/D algorithm. To test this point, the well-known array
of Goldstone comner reflectors observed by Seasat were
processed by both the CS algorithm and the reference
R/D processor. SLC images were produced. The comner
reflector responses were analyzed, and the results are
summarized in Table II. (Although the absolute radio-

Fig. 6. Seasat scenc of Vancouver processed by the chirp scaling algo-
rithm.

metric values may be suspect due to possible small-signal
suppression, the impulse response widths and relative
sidelobe norms have been shown to be useful for the
Seasat Goldstone scene [3].)

Range and azimuth resolutions were each averaged over
the six corner reflectors, with better performance of the
CS algorithm observed in both dimensions (units in the
table are in the original sample spacing of the single look
complex image file). The results of this test showed that
the range resolution of the CS algorithm is 4.4 percentage
points better than the R/D algorithm, and the azimuth res-
olution is 3.3 percentage points better. This improve-
ment, attributed to the more accurate RCMC and SRC in
the CS algorithm, is considered to be significant, as the
specification for processor-induced broadening in a SAR
application is typically on the order of 7% or less.

The integrated sidelobe ratio (ISLR) in the range and
azimuth directions were also averaged over the six corner
reflectors, with comparable performance being obtained
from the two algorithms. This serves mainly to show that
different weightings have not been used to distort the res-
olution comparisons.

An additional sensitive test of image quality concerns
phase consistency. In order to assess the impact of pro-
cessor-induced phase continuity and relative phase errors,
each image was processed twice, with the input data spa-
tially shifted between runs in range and in azimuth. This
shift would tend to emphasize any systematic phase errors
related to image registration during the compression op-
eration due, for example, to range invariance. The phases
of the resulting pairs of image files were compared on a
pixel-by-pixel basis. For both the CS algorithm and the
precision R/D algorithm, the rms phase difference be-
tween pixels was only 3°, indicating that each algorithm
has excellent phase consistency.

VI. IMPLEMENTATION CONSIDERATIONS
A. Sensitivity to Errors in Processing Parameters

In SAR processing, a number of parameters have to be
well matched in order to achieve accurate focusing. These
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TABLE II
COMPARISON BETWEEN CHIRP SCALING (CS) AND RANGE/DOPPLER (R/D) ALGORITHMS. THE R/D ALGORITHM IS A PRECISION
VERSION, USING SECONDARY RANGE COMPRESSION, AND THE COMPARISON IS DONE WITH CORNER REFLECTORS IN THE GOLDSTONE

SEASAT SCENE.
Range Azimuth Range Azimuth
Resolution Resolution ISLR ISLR
Target Algorithm (cells) (cells) (dB) (dB)
1 Cs 1.165 1.251 -10.3 -13.2
R/D 1.192 1.272 -10.5 -12.9
2 CS 1.242 1.294 -7.3 -10.0
R/D 1.272 1.299 -7.5 -9.8
3 CS 1.243 1.295 -11.3 -13.7
R/D 1.292 1.373 -11.2 -13.1
4 Cs 1.187 1.376 -8.5 -12.0
R/D 1.223 1.362 -9.3 -12.5
5 CS 1.232 1.283 -12.9 -12.6
R/D 1.351 1.438 -11.9 -11.7
6 CS 1.164 1.236 -7.0 -6.2
R/D 1.227 1.248 -7.7 -6.4
Average CS 1.206 1.289 -9.6 -11.3
R/D 1.259 1.332 -9.7 —-11.1
Standard CS 0.038 0.049 2.3 2.8
Deviation R/D 0.058 0.072 1.8 2.6

include the range and azimuth FM rates and the Doppler
centroid. It has been found that the chirp scaling (CS)
algorithm shares the same sensitivity to errors in these
parameters as the R/D algorithm, with two minor excep-
tions.

As the CS algorithm relies upon the linearity and
knowledge of the slope of the range chirp phase, errors in
RCMC could be created by incorrect knowledge of the
parameters of the range chirp. However, analysis has
shown that the CS algorithm is relatively insensitive to
slope errors or nonlinearities in the range chirp. For ex-
ample, loss of focus in the range compression operation
will occur before loss of focus is noted in the RCMC op-
eration, so that if the chirp parameters are known accu-
rately enough for range focusing, then the chirp scaling
method of RCMC will be accurate.

Second, the range chirp FM rate affects the residual
phase compensation. However, the effect was found to be
very small, causing at most a 2° phase error for the max-
imum range FM rate errors expected in RADARSAT.

B. Computational Efficiency

Since only FFT’s and multiplications are used, the im-
plementation in software as well as hardware is relatively
straightforward. In the case of a software processor, a few
pages of code suffice for the core signal processing oper-
ations, while for a hardware processor, only FFT, vector
multiplication, and memory units are necessary. Due to
the two-dimensional nature of the algorithm, it is easily
implemented on a modern workstation with large mem-
ory, e.g., 256 Mb or more. It is also well suited to mas-
sively parallel main frame machines such as the CM-5
[12] since the FFT’s and multiples may be implemented
in parallel.

In the absence of significant Doppler variation, the CS
algorithm requires about 5% less arithmetic than the R/D
algorithm, a saving mainly due to the removal of the eight-
point RCMC interpolator. The CS algorithm requires two
more corner turns than the R/D algorithm, but that factor
is less significant with modern hardware with large solid-
state memories.

C. Block Processing

In all SAR processing algorithms, absolute or unaliased
azimuth frequency must be used in the parameter calcu-
lations. Thus, in SAR processing algorithms that operate
in the two-dimensional frequency domain, the variation
of Doppler centroid with range imposes an upper limit on
the range block size that can be processed. This some-
times necessitates using a smaller block size for such al-
gorithms than would be chosen from efficiency consider-
ations alone.

In the CS algorithm, this implies that smaller range
blocks must be used between the range FFT and the range
IFFT. The governing block size is determined after the
range matched filter throwaway region is discarded, so the
range chirp length is not a factor in selecting the block
size.

For RADARSAT, up to three range blocks are required
to accommodate all imaging modes over all expected
squint conditions. Three blocks may be implemented
readily in an operational CS processor. The Doppler vari-
ation is not a controlling issue for most ERS-1 data when
it is operated in yaw-steering mode. For an L-band sensor
like Seasat, the full-range swath usually can be focused
in one block because the relative Doppler centroid varia-
tions are fewer than those at C band.

When significant Doppler variation must be accom-
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modated, the CS algorithm requires a slightly larger
memory and processing time than an R/D processor would
need under the same conditions. For the range of param-
eters experienced by the various RADARSAT modes,
where the Doppler centroid can vary by up to 2.3 PRF’s,
the extra memory ranges from about 1 to 10%, and the
extra computing can be up to 5% higher than that of the
reference R/D processor.

D. Range-Varying Velocity Parameter

From (7), for narrow beam systems, the range cell mi-
gration (in meters) is approximately

_N_r
T8 V3

Monochromatic wavenumber domain processors neglect
both the r and the V(r) dependencies within a block since
range parameters must hold the same value for all mem-
bers in the frequency domain. The chirp scaling algorithm
neglects only the range dependence through V(r). It fol-
lows that the chirp scaling method is much less sensitive
to errors in this parameter.

Consider the following example. For typical geome-
tries at 800 km altitude, the relative sensitivities of the
V(r) term and the r terms are

Ar

f2 (23)

Vi 1 8 -1
ar Vi = 610" m and
or1 =6 -1
= 1.2 -107°m™", (24)

Hence, setting V(r) = const and allowing a variable r in-
troduces 20 times less residual range cell migration cor-
rection error than does setting both ¥(r) and r to constant
values. When this error is the governing constraint, range
block size for the chirp scaling algorithm could be much
larger than for the other wave domain techniques.

E. Doppler Estimation

The Doppler estimator can be incorporated into the CS
algorithm just as easily as in the R/D case, and the
Doppler centroid estimator may be done after the azimuth
FFT on range uncompressed data with no adverse effects
on accuracy.

F. Weighting

To achieve a shift of the range signal, the chirp scaling
phase multiply in (14) introduces a frequency shift in the
range spectrum. In order to avoid spectral overlap in the
two-dimensional frequency domain, this shift must not
exceed half the margin between the range sampling fre-
quency and the range bandwidth. A similar argument
shows, due to the small range-variant frequency shift in-
troduced by the chirp scaling multiplier, that the range
bandwidth of the signal will be slightly altered. Although
this effect is offset later in the processing sequence by the
phase multiply of (21), in principle, the frequency

weighting of the envelope of the multiplier of (19) should
take this into consideration. However, for RADARSAT
parameters, the effect is negligible. The fractional change
in range bandwidth is equal to the number of range cells
in the differential RCMC divided by the range chirp length
in cells, which is only 0.003 for RADARSAT. Thus, the
potential bandwidth expansion due to the chirp scaling al-
gorithm is about 0.3%.

VII. CoNCLUSIONS

The chirp scaling (CS) algorithm is a new method of
SAR processing in which the range cell migration correc-
tion (RCMC) operation is efficiently and accurately im-
plemented by a range-time, azimuth-frequency-domain
multiply, thereby eliminating the traditional interpolation
operation. The multiply uses the linear FM property of
the range chirp to scale (i.e., differentially shift) the radar
data in the range direction, achieving the desired range-
time and azimuth-frequency-dependent correction.

The CS algorithm has been analyzed theoretically and
experimentally, and has been found to be an appealing
approach to precision SAR processing, particularly when
high accuracy is needed in the single-look complex image
product. In the experiments, the accuracy and image qual-
ity of the CS algorithm compare favorably with the pre-
cision R/D algorithm. An improvement in range resolu-
tion was measured, mainly due to the more accurate
method of RCMC and SRC employed. The CS algorithm
is capable of high performance over a relatively wide
range of parameters, even for squinted data, and at a small
increment in cost when compared to current methods.

APPENDIX A
CHIRP SCALING PRINCIPLE

The scaling principle applies to a large time-band-
width, linearly frequency-modulated signal [13], and is
briefly summarized here. Consider a one-dimensional sig-
nal with linear FM modulation (chirp) of rate K, and phase
center at 7 = 7, as

exp { —jmK(r — 7))’} (A-1)
The phase structure of this signal may be slightly re-
shaped by multiplying with another linearly modulated
signal having an FM rate C; that is a small fraction of that
of the original signal. The multiplicand is

®, = exp {—jxC,K,7*}. (A-2)
The result, after multiplication of the two modulated sig-
nals, is

exp {—jxK[(1 + C)7r* - 21,7 + )]}  (A-3)

which is a chirp signal resembling the original, but with
a new phase center

(A4
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and new chirp rate

K; = K1 + C). (A-5)

The position of the new phase center is proportional to 7,
and thus is scaled linearly. The new chirp rate is known,
and in the chirp scaling algorithm, is matched, to lead to
range signal focus, during range compression. A conse-
quence of the chirp scaling multiply is that the phase of
the signal at the new phase center is

C, 2
T
1+ C

which, having a known value, may be eliminated by a
final phase multiply.

—7K; (A-6)

APPENDIX B
UsE OF A NONLINEAR RANGE PERTURBATION FUNCTION

The chirp scaling multiplier or range perturbation func-
tion (RPF) of (14) is exactly linear FM (i.e., quadratic
function of 7) only if the following two conditions are
satisfied:

1) the radar pulse is linear FM, and
2) the azimuth FM rate parameter V(r) is range in-
variant.

In practice, ¥(r) varies with range, and the range chirp
may have a nonlinear component. To handle this case ac-
curately, a nonlinear component can be added to the fre-
quency of the RPF by expressing the phase of the RPF as
a polynomial in range time:

QI(T’ f’ rref) = exp {_j(aO + a7y

+arr +am+ -0} (B

where 7, = 7 — 7, The coefficients a; are a function of
azimuth frequency f and the reference range r, and for
the linear RPF case, all coeflicients are zero except a,,
which is equal to 7K, C; as in (14) of the text.

In the RADARSAT experiments, the RPF frequency
was approximated by a cubic polynomial (i.e., the RPF
phase was a quartic function of 7, [25]).

The spectrum of the perturbed signal can be obtained
analytically by an approximation that the frequency of the
RPF is locally linear, i.e., the RPF is approximated by

Y7, f, re) = €xp {—j(gor1 + &™)}  (B-2)

The coefficients g, and g, are functions of range; they de-
pend upon the local slope of the RPF frequency. Note that
8o is zero and g, is range independent (= 7K, C,) if the
frequency of the RPF is perfectly linear, as in (14). Note
also that (B-2) is equivalent to changing the reference
range for each value of 7.

Letting
AF \2
D(f,n = ,1- <2V{r)> ,

(B-3)
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the two-dimensional spectrum of the perturbed signal is
given by

_ _nf __
PP D) "©“< 2V2> s°( K+ cs)>

cexp|—j 4-')\—1 rD(f, r)}

2
- exp | +jiT D n: r)f’] exp [—j %fﬂ]
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St
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0 . 80

+ =) —j =]
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B-4)

Compared to the linear frequency RPF case, the resid-
ual phase represented by the last exponential term in (B-4)
is slightly modified to account for the local linearization
process.

- exp

Tref

r
(D(f, N D(f, I'ep

AprpPENDIX C
PuASE ERROR OF COMPRESSED SIGNAL DUE TO RANGE
MATCHED FILTER INVARIANCE

Although all intrinsic errors in the CS algorithm are
small, the largest error in the algorithm is the range-in-
variant assumption of the range matched filter. Theoreti-
cally, the range matched filter varies with range due to
range-variant matched filter FM rate K. In this Appendix,
we derive a phase correction factor to remove the main
manifestation of this range-invariance assumption. (Note
that the range/Doppler algorithm also experiences this er-
ror, and could be corrected in the same way.)

Let AK, be the error in the FM rate due to the range-
invariant assumption of K. It introduces two errors: range
broadening and phase errors, with the latter being the more
prominent of the two. The phase error A¢ at the edge of
the matched filter function is given by

2
A¢ = TAK, (§T>

where T is the pulse duration. The phase error Ay after
compression can be obtained by noting that the value of
the compressed pulse at its peak is given by

€1

+772
x(0) = S e ITAKEE gy (C-2)
-T2

By expanding the phase of x(0) in a power series [2],
[11] the phase error Ay is found to be

A¢

Ay = =37+ 000280 + - - = _A3_¢, (©-3)
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[The same result has been obtained by Wong (unpub-
lished).] The value of Ay can be computed as a function
of range, and thus the phase error can be corrected in the
compressed image.

For RADARSAT, the typical phase error of the edge
of the matched filter function is less than 10° for the Fine-
Resolution beams. This gives less than 1% broadening in
the compression process. The phase error after compres-
sion is about 3°, which can be corrected using (C-3).
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