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Improved Slope Estimation for SAR
Doppler Ambiguity Resolution
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Abstract—The idea of using the Radon transform to measure the
alignment of linear features in synthetic aperture radar (SAR) data
has breathed new life into the “look displacement” class of Doppler
ambiguity resolution algorithms. In these algorithms, the slope of
target energy is estimated to obtain the satellite beam pointing
angle accurately enough to resolve the Doppler ambiguity. After
explaining the method and adding some minor improvements, it
is shown how it can work well on satellite SAR data. Then, an al-
ternate method is developed that combines the ideas of the Radon
and look displacement algorithms to obtain a computationally sim-
pler and more accurate algorithm. In addition, the quality checks
of the “spatial diversity” approach are used to increase the robust-
ness of the algorithm. Even though the algorithm was conceived for
high-contrast scenes, it works remarkably well in low to medium
contrast scenes as well.

Index Terms—Doppler ambiguity resolution, Doppler centroid
estimation, Radon transform, synthetic aperture radar (SAR) an-
tenna pointing angle.

I. INTRODUCTION

I N high-quality synthetic aperture radar (SAR) processing,
the estimation of the Doppler centroid frequency is an

essential procedure for good image focus. Due to the fact that
the azimuth data are sampled by the pulse repetition frequency
(PRF), the Doppler centroid estimate must be expressed in
two parts: the baseband Doppler centroid and the Doppler
ambiguity, and separate estimators are needed for each part. In
the baseband Doppler centroid estimation, several algorithms,
such as the “spectral fit” and average cross correlation (ACCC)
methods, can give reliable estimates in most cases—usually
better than 1% of the PRF [1]. In solving for the Doppler
ambiguity number, a number of algorithms have been used,
such as look displacement [2], multiple PRF [3], wavelength
diversity (WDA) [4], multilook cross correlation (MLCC), and
multilook beat frequency (MLBF) algorithms [5]. However,
the accuracy and robustness of the Doppler ambiguity number
estimate still needs improvement to satisfy current high-quality
SAR processing requirements.

The “look displacement” algorithm proposed in 1986 [2]
uses the fact that the average slope of the target trajectory
before range cell migration correction (RCMC) is proportional
to the beam squint angle and the Doppler centroid. In this
method, the Doppler ambiguity is estimated by measuring
the range displacement of targets between two azimuth looks
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or, equivalently, by measuring the slope of targets in the
range-compressed image.

The Radon transform is a well-known method of detecting
linear features in an image [6], such as the slope of lines (Sec-
tions I-A and II). Kong et al. have applied the Radon transform
to estimate the Doppler centroid frequency of airborne SAR data
in 2005 [7]. In the present paper, we adapt Kong’s method to
satellite SAR data (Section III-A) and propose some algorithm
improvements (Section III-B).

Then, a simpler method is introduced that uses an integra-
tion rather than the more complicated Radon transform (Sec-
tion IV). We use a diverse RADARSAT-1 scene to illustrate
the effectiveness of the two algorithms in resolving the Doppler
ambiguity (Section V). We find that both methods are better
than previous established methods and that the new method is
slightly better than the Radon method. We conclude that both
the Radon method and the new method not only obtain reliable
Doppler ambiguity estimates in scenes with bright isolated tar-
gets, but also work well in the areas with low to medium contrast
(Section VI).

A. Geometry of a SAR Target—Range Cell Migration Slope

The Doppler centroid is an important parameter in SAR pro-
cessing. It corresponds to the azimuth or Doppler frequency
when the target is illuminated by the center of the beam. A
Doppler centroid error can lead to defocusing, lower signal-to-
noise ratio (SNR), misregistration, and ambiguities in the pro-
cessed image.

The Doppler centroid can be derived from a geometry model
of the SAR system, with an accurate knowledge of system pa-
rameters such as the satellite attitude (see [1, App. 12A]). The
geometry model of a SAR system is shown in Fig. 1, where the
effective SAR forward velocity is , and is the beam squint
angle measured in the slant range plane. If we know the param-
eter values, the total Doppler centroid can be obtained from

(1)

where is the wavelength corresponding to the radar carrier
frequency. However, as the attitude measurements are usually
not accurate enough for precision processing, estimators based
on the received data are widely used to obtain Doppler centroid
estimates.

A nonzero squint angle, , leads to a nonzero average range
migration in the range/azimuth plane. If the slope of this average
migration can be estimated, the squint angle and thereby the
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Fig. 1. Geometry of SAR data acquisition in the slant range plane.

Fig. 2. How slant range to the target varies as the satellite passes by.

Doppler centroid can be found. Note that the conversion factor
from slope to Doppler frequency in (1) varies with range, be-
cause the orientation of the slant range plane varies with beam
elevation angle and is mildly range dependent.

Fig. 3 shows the slant range to the target at the five times
used in Fig. 2. It is seen that the signal energy can be spread
over several range cells during the exposure time.1 The variation
of range with time is called range cell migration (RCM). The
direction of the beam centerline is perpendicular to the locus of
target energy at the middle of the target exposure, , so the
squint angle, , is equal to the angle of the linear component
of RCM.

As a simple way to illustrate how the centroid can be esti-
mated from received data, the point target response after range
compression is examined. The sensing geometry is illustrated in
Fig. 2 in the slant range plane, where five positions of the satel-
lite are shown, centered on the time, , that the beam center
crosses the target. The range from the satellite to the target,

1The units of range and azimuth are arbitrary in this illustration, but the aspect
ratio is correct.

Fig. 3. Range migration of a target as a function of squint angle measured in
the slant range plane.

, is assumed to be a hyperbola, but can be approximated
by the parabola2

(2)

From (2), we see that the average RCM slope can be ex-
pressed as in units of meters per second. From Fig. 3,
it is seen that the beam squint angle is also equal to the arc tan-
gent of the slope expressed in units of range meters per azimuth
meter. If the slope is positive, that is, the range increases with
azimuth time, the antenna has a “backward” or negative squint
angle—the Doppler frequency is negative, as is typical of as-
cending orbits without yaw steering. On the other hand, a nega-
tive slope corresponds to a forward squint angle of the antenna.

Therefore, if the RCM slope is measured correctly, the abso-
lute Doppler centroid can be derived directly from (1), with the
knowledge of the radar wavelength, , and the geometry vari-
able, . While there are more accurate ways of estimating the
baseband Doppler centroid, the method of measuring the RCM
slope can provide a reliable estimate of the Doppler ambiguity
number.

II. RADON TRANSFORM FOR LINEAR FEATURE DETECTION

In order to extract the information of RCM slope from the
range-compressed image, certain image processing techniques
can be applied. The Radon transform is an effective technique in
extracting the parameters of linear features, such as their slope,
even in the presence of noise [6]. Because of its advantageous
property in detecting lines with arbitrary orientation, the Radon
transform has been successfully used in SAR image processing,
such as ship wake detection [8]. This transform integrates in-
tensity along every possible direction in the image and maps
this information into a feature space parameterized by the angle
with respect to the positive axis, , and the distance from the
origin, .

The pair form the coordinates of the transformed rep-
resentation of a line. The concept is that a concentrated point in
the transform space represents a linear feature in the image. This
approach is particularly suited for noisy images, since the inte-
gration process tends to average out intensity fluctuations due to

2It is assumed that the satellite and the target remain in the same slant range
plane for the exposure time of the target. This plane is unique to a set of targets
that share the same slant range of closest approach—the elevation angle of the
plane varies with the slant range of closest approach of different targets.
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Fig. 4. Simulated SAR magnitude image with three point targets.

Fig. 5. Radon transform of the SAR image of Fig. 4.

noise. The transform equation for the image, , is defined
as [6]

(3)

where is the Dirac delta function and the factor,
, directs the integration along the angle, . The range of

the integration angle is limited to .
To illustrate the relationship between the image coordinates,

, and the transform parameters, , a range-compressed
SAR magnitude image with three point targets is simulated in
Fig. 4. A significant linear RCM is assumed, but there is negli-
gible quadratic RCM. The slope of the target trajectories is 20 ,
and the Radon transform is taken over angles from 18 to 22 ,
in steps of 0.2 .

The result is shown in Fig. 5, where only the central parts of
the and axes are displayed. When the integration (3) is taken
along the true direction of the lines, the energy is most concen-
trated along the axis. We see that there are three concentrated
areas of energy in the vicinity of , which indicates the
angle of the skewed lines in the image.

In order to quantify the results in more detail, we take vertical
slices along the axis of Fig. 5 at several angles. Five slices are
shown in Fig. 6, using angles from 19.2 to 20.8 . It can be
seen that the Radon transform result is highly concentrated at
the actual skew angle of the target trajectories and increasingly

Fig. 6. Vertical slices through the Radon transform of Fig. 5.

dispersed at other angles. In this way, the slope of the lines in
the original image can be estimated by finding the angle, , that
gives the maximum concentration of the Radon transform en-
ergy along the axis. A “feature space line detector” was pro-
posed in [8], where it was shown that the calculation of the vari-
ance of the slices along the direction is a good measurement
of the energy concentration.

III. DOPPLER AMBIGUITY RESOLVER USING

THE RADON TRANSFORM

In this section, we apply Kong’s geometry Doppler estimator
(GDE) based on the Radon transform to RADARSAT data. We
then propose some improvements to the Radon approach arising
from satellite SAR processing experience.

A. Applying the GDE to Satellite SAR Data

Due to its ability of detecting linear features in an image,
Kong et al. applied the Radon transform to the Doppler cen-
troid estimation of airborne SAR data [7]. However, due to the
lack of bright isolated targets in most SAR data, the measure-
ments are usually not precise enough for the estimation of the
baseband part of the Doppler centroid. Since there are several
algorithms that can obtain very accurate baseband centroid esti-
mates (especially in areas of very low contrast), we recommend
that the Radon transform only be used to obtain the Doppler am-
biguity number. The details of the Radon estimator can be stated
as follows.

First, take the magnitude or power of the range-compressed
image and then calculate the Radon transform. As the Radon
transform requires a fair amount of computing time, restrict the
angles to within a small range around the expected value. For
example, we can estimate the squint angle limits from the ge-
ometry model of the satellite SAR system, with the assumption
of the maximum yaw/pitch angle deviations. Otherwise, if the
range of angles is not easy to estimate a priori, the Radon trans-
form can be applied first using coarse angle increments, and later
with a reduced range of angles as the estimates are refined. In the
implementation, the Radon transform is calculated with discrete
parameter steps, and the transformed image can be expressed as

(4)

where and are the starting values and and are the
step sizes of the Radon parameters.
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Fig. 7. Example of bright discrete targets (ships) in range-compressed
RADARSAT data.

Fig. 8. Slices taken from the Radon transform of the “ships” scene of Fig. 7,
taken at different angles.

In order to illustrate the principle of the estimator, we first ex-
amine a part of an image with bright discrete targets. The ships
in the RADARSAT-1 Vancouver scene provide a good example
(see [1, Fig. 12.7]). The ships appear as several near-linear tra-
jectories in the range-compressed magnitude image in Fig. 7.
The linear component of range migration is clearly seen. The
quadratic term is relatively small in C-band satellite data—about
half a range cell.

The Radon transform is applied to the range-compressed
image of the “ships” scene of Fig. 7, using angles, , from 1.4
to 2.0 with an increment of 0.02 . Similar to Fig. 6, Fig. 8
shows three vertical slices through the Radon transform of the
scene at different angles (for clarity, the horizontal axis of the
figure is expanded so that only one of the ships is shown). It can
be seen that the curve at 1.72 is more concentrated than the
curves at the other two angles. By examining a wider range of
angles, it was found that the concentration of energy dispersed
for angles away from 1.72 , so this value is very close to the
true squint angle.

To get better estimation sensitivity, Kong et al. calculate the
differential of the transform slices along to emphasize the en-
ergy concentration [7]. The results for the three slices of Fig. 8
are shown in Fig. 9. It can be seen that the curve close to the true
skew angle exhibits higher variance, while the curves away from
the true skew angle have lower variance, as the energy in the in-
tegral is more dispersed. In both Figs. 8 and 9, the slices at 1.82
and 1.92 are similar to the slices taken at 1.62 and 1.52 .

Fig. 9. Differential of the slices of the Radon transform of the “ships” scene,
Fig. 8, taken at different angles.

Fig. 10. Fitting a Gaussian model to the variance curve.

To quantify the variability of the differential curve of Fig. 9,
the variance of the differential is calculated over the dimen-
sion, for each angle in the Radon transform. Following [7], the
calculation for the slice at can be expressed as

(5)

(6)

where is the index of , is the index of , and is the
differential of the Radon transform, , along the axis.
The variance curve will have a peak at the angle where the con-
centration of energy is the greatest.

1) Gaussian Fit to the Variance Curve: In practice, a SAR
scene cannot be relied upon to have isolated point targets, and
the presence of noise and clutter can distort the variance curve.
Rather than simply finding the peak of the variance curve, a
curve-fitting approach can find the central angle more accu-
rately. Kong et al. have recommended using a Gaussian function
with four unknown parameters [7]

(7)

where is the independent angle variable and there are four
unknown parameters, the amplitude, , the mean or peak loca-
tion parameter, , the standard deviation, , and a pedestal, .
A Gaussian curve fit is illustrated by the dashed–dotted line in
Fig. 10.

For the “ships” scene of Fig. 7, we estimated the four
unknown parameters of the Gaussian fit using MATLAB’s
fminsearch routine, which uses the Nelder–Mead param-
eter search procedure [9]. The variance curve and the Gaussian
fit are shown in Fig. 11. The peak of the Gaussian fit is located
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Fig. 11 .Estimating the squint angle by fitting a Gaussian curve to the variance
of the differential—the “ships” scene.

at angle , which is very close to the true squint angle
of 1.720 . Because the variance curve is quite symmetrical and
the noise level is low in this simple case, the Gaussian fit gives
almost the same answer as the peak of the sampled curve and
the center of gravity (see Section III-B6). However, with more
general scene content, the variance curve will be more random,
and the Gaussian curve fit will give a more accurate estimate
of the central angle.

The closeness of the fit shows that the Gaussian function is
an appropriate fitting function to use for this radar data. The
diamonds in the figure give the results of the RCMC/integration
method, to be discussed in Section IV.

B. Improvements to the GDE

The method described so far in Section III is the one described
by Kong [7]. All we have added is an example with satellite data.
In this subsection, we discuss some improvements that can be
made to Kong’s algorithm.

1) Integer Estimation Problem: As in other DAR algo-
rithms, the baseband Doppler centroid should be measured first
using the “spectral fit” or “ACCC” algorithms [1]. Then, the
baseband Doppler centroid is unwrapped and subtracted from
the estimated absolute Doppler frequency, and the result is di-
vided by the PRF. After this, the ambiguity estimate is obtained
by a rounding operation. This reduces the ambiguity estimate to
the more reliable estimate of an integer (the unwrapping serves
to make the ambiguity number the same over the whole scene).
The procedure can be expressed as

round (8)

where is the absolute Doppler frequency estimate from the
Radon algorithm, is the accurate baseband Doppler centroid
estimate, and is the estimated ambiguity number.

2) Removing the Quadratic RCM: As shown in (2), the
RCM is not a purely linear function of azimuth time. The RCM
has a quadratic component

(9)

meters, which can be significant compared to the range cell size.
The variable is the beam center crossing time and is

the slant range at the time when the target is illuminated by the
beam center.

The quadratic component imparts a slope variation along the
target trajectory. If the extent of the trajectory corresponding to
one PRF is considered, the slope at the ends of the trajectory is
the equivalent of 0.5 of an ambiguity compared to the middle
of the trajectory. This variation of slope has the effect of broad-
ening the variance function, which reduces the sensitivity of the
ambiguity estimate. Therefore, it is recommended to remove the
quadratic part from the RCM before taking the Radon transform,
to adjust the RCM to a straight line. Removing the quadratic
component has the additional advantage of reducing the sensi-
tivity of the estimator to strong partially exposed targets.

The quadratic component of RCM cannot be ignored in some
SAR systems. Luckily, for C-Band satellite SAR systems, such
as RADARSAT-1 and ENVISAT, the quadratic part of RCM is
relatively small. For example, in the “ships” scene that is ac-
quired by the F2 beam of RADARSAT-1, the quadratic RCM
is approximately 3 m, about half a range cell. Removing the
quadratic RCM would not lead to a significant improvement in
this case. However, for L-band satellites, the quadratic part of
RCM is about 35 m, and removing it will improve the estimator
considerably. Note that the quadratic component of RCM can
only be efficiently removed in the azimuth frequency domain
and that the Radon method can be adapted to operate in this
domain.

An additional point is that the linear component of RCM
varies with range, which also broadens the variance curve. This
effect can be alleviated by estimating the ambiguity number in
smaller range extents, as done in the spatial diversity approach.

3) Localized Radon Transform: If a part of an image can
be identified that has strong discrete targets, the estimator will
work better if the Radon transform is restricted to that region, as
we did in the “ships” scene. This is referred to as the localized
Radon transform in [6]. If the correct ambiguity can be found
from only a small part of a scene, the result can be applied to
the whole scene, as long as the baseband centroid is unwrapped
correctly.

4) Secondary Range Compression: Depending upon the
radar system parameters and the squint angle, secondary range
compression (SRC) may have to be applied to sharpen the
focus in the range Doppler domain. As discussed in [1, ch. 6],
without SRC the range-compressed image can be defocused in
the azimuth frequency domain, even though it is well focused
in the time domain. On the other hand, if SRC is applied with
the range compression filter, the image is well focused in the
azimuth frequency domain, but possibly not in the time domain.

Therefore, if we apply the Radon transform to RCM slope
detection in the time domain (as we do in the examples in this
paper), SRC should be implemented after the estimator. Oth-
erwise, if the slope is detected in the frequency domain, SRC
should be implemented before the estimator.

5) Estimator Quality Criteria: In order to avoid corruption
by bad estimates from the areas with very weak backscatter or
low contrast, quality criteria can be used to detect and remove
bad estimates from the final Radon estimate, when the “spatial
diversity” approach [10] is used. In addition to the data quality
criteria of SNR and contrast used in [10], the following four
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Fig. 12. Finding the “peak” of the variance curve by the “center of gravity”
method.

estimator quality criteria that are specific to the operation of the
Radon method were examined.

a) Gaussian Fit Flag: If the search for the four Gaussian fit
parameters does not converge or the fit parameters are be-
yond a reasonable range, we declare that the fit procedure
fails flag . If the fit is deemed successful, the flag is
set to 1 and the next three criteria are examined.

b) Fit Distortion: The Fit Distortion is defined as the nor-
malized standard deviation of the difference between the
measured variance curve and the Gaussian function.

c) Peak to Pedestal Ratio (PPR): In addition, the shape of the
fitted Gaussian function can be used to measure how good
the estimate is. The PPR is obtained from the Gaussian
fitting parameters by PPR . The bigger the
ratio, the better the fit.

d) Width of Gaussian Fit: This width is obtained from the
parameter of the Gaussian fit. On the assumption that

“sharper” variance functions indicate better estimates,
lower values of are preferred.

6) “Center of Gravity” Method: If you want to avoid the
complexity of curve fitting, a simpler and almost as accurate
method of finding the location of the peak of the variance curve
is to find the “center of gravity” of the curve. The central angle
is found by this method using

(10)

where is the variance value at the angle, . As illustrated
in Fig. 12, this method is equivalent to finding the angle, , that
balances the integral of the shaded areas, and , when the
integral is taken to the left and to the right of the estimated angle.
When the variance function is not symmetric because of noise
and clutter, the center of gravity is a more accurate estimate than
simply the position of the maximum value.

The result of the center of gravity method applied to the
“ships” scene is shown in Fig. 11. While the Gaussian fitting
method obtains the best estimate in this case, the error of
the center of gravity method is fairly small, well within the
ambiguity error limit (the ambiguity error limit represents the
range of angles that do not lead to a Doppler ambiguity error).
Therefore, the center of gravity can be viewed as a simpler
measurement of the squint angle than the Gaussian fit, and may
be adequate for many applications. Further comparisons are
given in Section V.

Fig. 13. Flowchart of the RCMC/integration method of finding the Doppler
ambiguity.

IV. RCMC/INTEGRATION METHOD

A new method of Doppler ambiguity resolution can be de-
fined, as suggsted by the following points.

• Because the baseband centroid can be found accurately, the
search for the correct Doppler ambiguity can be confined to
integer numbers (i.e., the ambiguity number, —see
Section III-B1).

• While the Radon transform is computed for a fine grid of
angles (as in Section III), only a few discrete angles need
be searched for the integer numbers.

• The estimation of linear features is more sensitive once the
quadratic RCMC is performed.

• RCMC has to be done for the processing anyway, so doing
it at the estimation stage is not a significant burden.

The method that is suggested by these considerations is an iter-
ative or search scheme outlined in Fig. 13. It starts from range-
compressed, SRCed data in the azimuth frequency domain, and
operates as follows.

1) Find the baseband centroid as a function of range over the
whole scene and unwrap over PRF jumps.

2) Make a preliminary estimate of the ambiguity number
from geometry, including its likely range of values (con-
sider the possible angles of the radar beam, and include
the Earth rotation component).

3) Apply full RCMC (e.g., both the linear and quadratic
parts) over the whole scene, using the candidate ambiguity
number.

4) Convert the radar data to magnitude or power units and in-
tegrate the energy over the azimuth axis to obtain a curve
of energy versus range.

5) Compute the variance of the differential of the integrated
energy over the range variable, as done in the Radon
method.
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Fig. 14. Integration along azimuth of the “ships” scene after RCMC—for each
curve, RCMC is done with a different assumed ambiguity number.

6) Check whether the variance has gone through a maximum
as a function of ambiguity number.

7) If a maximum is reached, the correct ambiguity has been
found. If not, increment the ambiguity number, and repeat
from Step 3). Search for the correct ambiguity number in
both directions.

A. Discussion and Example

Essentially, this method replaces the Radon transform with
a simple integration of the image energy over one dimension
(azimuth). The RCMC removes the quadratic component and
variation of slope with range discussed in Section III-B2. Only
one ambiguity number results in RCMCed data that are aligned
accurately in azimuth, and quality checks are an effective way
of checking the accuracy of the alignment.

The baseband centroid estimates must be unwrapped so that
a single ambiguity number applies over the whole scene. The
spatial diversity, curve fitting method is the most reliable way of
ensuring accurate estimates that vary smoothly over the scene,
and that the unwrapping is correct [10].

The RCMC is best applied in the azimuth frequency domain,
as in the range Doppler algorithm, so that the quadratic RCMC
can be performed efficiently. The subsequent estimation can be
done in this domain, which is why SRC should be applied with
the range compression filter (i.e., using Option 3 described in
[1, ch. 6]).

Note that the baseband estimates are used in different ways
in the two approaches. In the RCMC/integration method, they
are used to determine the curve for the RCM correction—where
a wrong baseband estimate would increase the ambiguity level.
They are also used (after unwrapping) to reduce the estimation
of the ambiguity to the more reliable estimate of an integer. In
the Radon method, the baseband estimate is only used at the end
to make the estimate near an integer in (8).

As in any ambiguity estimation method, parts of each scene
will likely yield bad estimates. These usually occur in areas of
low image SNR and/or low image contrast. Using the spatial di-
versity approach over small blocks of the scene, quality criteria
can be used to reject the bad blocks and obtain higher confidence
in the answer. In addition to measuring the SNR and contrast
of each block, the peak-to-mean ratio of the curve of variance
versus ambiguity number is a suitable quality parameter.

The RCMC/integration method was applied to the ships of
Fig. 7. The results of the azimuth integration using several am-
biguity numbers are shown in Fig. 14. It can be seen that the

result with the highest variance is obtained when the correct am-
biguity number, , is used.

The correct answer is even more apparent when the differen-
tial and variance are taken over the range variable. These results
are plotted in Fig. 11 with the symbols, which shows that the
RCMC/integration results agree closely with the Radon trans-
form results.

V. EXPERIMENTS WITH RADARSAT-1 DATA

As shown in the results of the “ships” scene, the estimators
using the Radon transform and the RCMC/integration method
work well in an area with isolated bright targets, since the targets
have clearly defined linear features after range compression. We
now examine how the estimators behave with a more general
scene content.

In order to test their performance on different kinds of ter-
rain in satellite SAR data, the RADARSAT-1 Vancouver scene
is selected, as it contains areas of salt water, fresh water, city,
suburbs, farmland, forest, and mountains. The salt water is in
the Gulf of Georgia—it has a relatively low surface roughness
as it is only 35 km wide and is sheltered from the open ocean.

As described in [10], we use the “spatial diversity” approach,
where the scene is divided into blocks containing different ter-
rain types. As only one ambiguity number has to be estimated
over the whole scene, areas that lead to bad estimates can be re-
moved, and an average or “majority vote” can be taken over the
remaining blocks. In these experiments, we divide the whole
Vancouver scene into 12 (range) 19 (azimuth) blocks, each
with 655 range cells and 1024 lines. The block borders are out-
lined in the range-compressed “image” in Fig. 12.15 of [1].

After range compression, the accurate “spectral fit” baseband
Doppler estimator is applied and the PRF wraparound is re-
moved. The quadratic component of RCM is removed. Then,
the Radon and the RCMC/integration methods are applied to es-
timate the Doppler ambiguity. The quality criteria are measured
for each block to test their effectiveness and to remove biased
or noisy estimates.

A. Format of the Experimental Results

Typical experimental results are shown in Figs. 15–18. Each
figure shows the results of the 12 blocks in one particular row
of the scene. The row number refers to one of the numbers 1–19
annotated along the vertical axis of Fig. 12.15 in [1] (the annota-
tion is adjacent to the upper boundary of the corresponding row).
There are 12 blocks in each row, corresponding to the numbers
1–12 on the horizontal axis of Fig. 12.15 in [1] (the annotation
is adjacent to the right boundary of the corresponding block). In
Figs. 15–18, the Block 1 results are shown in the top left sub-
plot—the block numbers increase from left to right then from
top to bottom, corresponding to increasing range in the scene.
The Block 12 results are in the lower right subplot of each figure.

The horizontal axis of each subplot refers to the angle used
in the Radon transform, but is expressed in units of ambiguity
number for compatibility with the RCMC/integration method
and for visibility of the result in ambiguity units. The unwrapped
baseband centroid is removed from the estimate, so the answer
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Fig. 15. Estimation results from the Vancouver scene, Row 1.

should be an integer. The correct answer is indicated by the ver-
tical solid line and equals 6 for this scene. The vertical dashed
lines indicate the PRF limits—exceeding these limits re-
sults in an ambiguity error.

In each panel, the solid curve shows the measured variance of
the difference of the Radon transform, referred to as the “vari-
ance curve.” Range compression is performed without SRC,
and then the Radon transform is applied. The Gaussian fit to
the Radon variance is indicated by the dashed–dotted line, and
a quality criterion is expressed in the peak-to-pedestal ratio,
PPR . The center of gravity and the other quality criteria dis-
cussed in Sections III-B5 and III-B6 are also computed, but are
not shown on the plots for clarity.

The RCMC/integration results are shown by the diamonds
and the connecting dashed lines, using data that has been
range-compressed with SRC. These results are more quantized
as they are only calculated at integer ambiguity numbers. The
peak-to-pedestal ratios, PPR , are annotated. The meaning
of this PPR is analogous to the Radon Gaussian fit PPR, but it
cannot be directly compared with it because of the quantization
of the calculations. Finally, the estimated ambiguity values are
given at the top of each panel for the Radon transform (left)
and the RCMC/integration methods (right).

B. Discussion of the Results

The results of four featured image rows are shown in
Figs. 15–18. Refer to Fig. 12.15 in [1] to observe the image
content of each block.

1) Image Row 1 (Fig. 15): Block 1 is half on land and half
in the water. Even though the land is on a wooded island with
few cultural features, there is enough contrast in the land to
give the correct estimate with both methods, although the peak
to pedestal ratios are quite low compared to other successful
blocks. Block 7 is mainly in the water, but has enough land area
to give a good result.

Blocks 2, 3, 5, and 6 are almost entirely in the water, with no
bright targets and a low SNR because the water is not rough. The
curves of variance versus ambiguity number are spread out and
rather random, due to the almost total lack of contrast. In three of
these cases, the Radon variance curve does not have a well-de-
fined peak and the Gaussian fit fails. In Block 5, the RCMC/inte-
gration method just barely gives the correct estimate. Both esti-
mates are correct in Block 6, but the PPR is low, which indicates
a higher probability of error.

Block 4 is also in the water, but contains the partial exposure
of a single ship. The Radon variance curve and its Gaussian fit
have a peak just outside the ambiguity error limit and gives an
incorrect result. However, the RCMC/integration method has a
well-defined peak at , and gives the correct re-
sult. Note that the RCMC/integration method is not affected by
partial exposures because the full RCMC removes the azimuth
dependence of the target slope (in general, the slope estimation
methods are not as upset by partial exposures as methods based
on measuring frequency or phase).

In comparison, Blocks 8–12 are in a suburban/agricul-
tural/wooded area of northern Washington state, with some
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Fig. 16. Estimation results from the Vancouver scene, Row 6.

cultural features but with relatively low contrast. The shapes of
the variance curves are sharper, narrower, closer to the Gaussian
function and have a larger PPR than the other blocks. As a
result, the angle estimates are well within the ambiguity error
limits.

The quality criteria are found to reflect the effect of the scene
content on the accuracy of the estimates—when the block has
fewer bright targets, less contrast or lower SNR, the PPR and
the height of the variance curve are smaller. The estimates of the
low-SNR Blocks 1–6 have a significant randomness and should
be removed from the estimate average by the SNR, PPR, or other
quality criteria, but are shown here for discussion purposes.

2) Image Row 6 (Fig. 16): Block 1 and the first half of Block
2 of Row 6 are in the water, and the remaining of the blocks are
in a suburban/farmland/forested area south of Vancouver. Block
1 gives a wrong result (as in several of the Row 1 blocks), but
Block 2 gives the correct result for both methods. In the case of
Block 2, both methods give a clear peak at even
though the peak-to-pedestal ratio is not large.

All the land blocks exhibit well-defined peaks and give cor-
rect results. Blocks 8–10 and 12 contain some strong discrete
reflectors which give large PPRs, with correspondingly sharper
peaks in the variance curves.

3) Image Row 8 (Fig. 17): Row 8 is included because Block
10 gave a very poor result in the baseband estimator owing to
a very strong, partially exposed reflector—see Fig. 12.16(b) in
[1]. The Radon result is biased by about 0.2 of a PRF, but is
within the error limit, while the RCMC/integration method gives

a clear, strong result. The PPRs are lower than in the surrounding
blocks.

4) Image Row 15 (Fig. 18): Row 15 covers a heavily
forested, mountainous region with elevation differences up to
1700 m. There is some radar layover in this part of the scene.
There are no cultural targets, except a few in Block 3. The
PPRs are much lower than in the land regions of the other
nonmountainous rows. Despite this, only Block 6 experienced
an incorrect result with these estimators.

C. Comparison of Results of Each Method

In Table I, we compare the performance of the Radon and
RCMC/integration estimators over a consistent set of blocks of
the Vancouver scene. Each estimator has different quality mea-
sures, but in order to compare the estimators fairly, we only
use only one quality criterion in this comparison so that the
same blocks are rejected for each estimator. The criterion of
“SNR dB” is used, and 28 out of the 228 blocks are re-
jected. These are mainly the blocks that are dominated by water
areas.

A convenient way to assess the results is to look at the am-
biguity estimate in units of PRFs after the baseband centroid is
subtracted but before the rounding in (8) is done. The results
should all equal 6 for this scene, but have a random compo-
nent due to the clutter and noise in the radar data. The second
column in Table I gives the mean value of all the blocks, the
next column gives the standard deviation, while the final column
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Fig. 17. Estimation results from the Vancouver scene, Row 8.

TABLE I
COMPARISON OF DAR METHODS FOR THE VANCOUVER SCENE

gives the percentage of blocks with the correct estimates of the
200 nonrejected blocks.

Other DAR methods are included in the table for comparison.
The first two rows assess the standard versions of the original
MLCC and MLBF algorithms described in [5]. The next row
gives the results of a new version of the MLBF algorithm that
uses an improved beat frequency estimator rather than a fast
Fourier transform [11]. The last three rows assess the Radon
transform method using the center of gravity measurement, the
Radon method with the Gaussian fit, and lastly the RCMC/inte-
gration method.

The mean values in Column 2 are all as close enough to 6
as not to matter. However, the standard deviation of the Doppler
estimates in Column 3 reveals the degree of randomness of
each method. The standard versions of the MLCC and MLBF

algorithms show a fair amount of variability, as many people
have experienced. The improved method of beat frequency
estimation in the MLBF algorithm shows considerably less
variation.

However, the estimates based on the Radon transform and
the RCMC/integration method are clearly giving much better
estimates with less variability. The Gaussian fit method of esti-
mating the slope gives better results than the center of gravity
method, likely because it uses a more appropriate function in the
fitting procedure. Finally, the RCMC/integration method gives
equal or better results than the Radon methods and may be
the best one of all (note that the standard deviation value for
the RCMC/integration method is somewhat affected by the in-
teger-quantized solutions).

1) Assessment of Quality Criteria: In the Vancouver scene
results, we see how the estimator can behave differently with
different scene content. Estimator quality criteria can be used
to automate the assessment of scene content and the estimation
results, to determine the suitability of each part of the scene
for providing robust ambiguity estimates. Of the four quality
measures discussed below, the first two are properties of the
scene, while the last two are properties of the estimator and do
depend upon the estimation algorithm.

Signal-to-Noise Ratio: Experience has shown that SNR is
important to all ambiguity estimation procedures (it is not as
important to the baseband estimators). If the receiver noise level
can be estimated for an area of the scene, a threshold can be
placed a few decibels above to set a rejection criterion.
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Fig. 18. Estimation results from the Vancouver scene, Row 15.

TABLE II
PERFORMANCE OF THE GAUSSIAN FIT FLAG AS A QUALITY MEASURE

Image Contrast: Unlike the WDA and MLCC methods, high
image contrast is important to the slope estimation methods.
Specifically, the presence of cultural features in the image
help these methods, but are not absolutely necessary for good
performance.

Quality of Gaussian Fit: Looking at the Gaussian fitting flag
for the whole 228 data blocks, 209 blocks gave correct ambi-
guity estimates when the fit was deemed successful flag ,
while only two blocks gave a wrong estimate when the flag
(see Table II). When the fit was deemed unsuccessful flag ,
five blocks were indeed bad estimates, while 12 blocks actually
had correct estimates. So, if the fitting flag were the only
quality criterion used, the correct ambiguity would be obtained
if the results were averaged or a “majority vote” were taken.
However, it is still recommended to add other quality criteria
to the rejection process, such as the SNR, contrast, fit width, fit
standard deviation, and PPR.

Peak-to-Pedestal Ratio: The PPR gives a good indication
of the sensitivity of the two slope estimation methods. If the
contrast in the scene is high enough that linear features are
recognizable by the algorithms, the PPR will have a high value,

say 3. The higher the PPR, the more sensitive the slope
measurement is.

VI. CONCLUSION

Results with simulations and real RADARSAT data show that
the estimate of the slope of linear features in a SAR image
can be an effective way of resolving the Doppler ambiguity
number. The Radon transform method [7] was evaluated and
some improvements made, and a new, simpler method based on
RCMC and azimuth integration was presented. The slope esti-
mation methods work well in medium to high-contrast scenes,
even when no prominent targets are visible. The estimators gave
the correct result in almost all areas of the tested RADARSAT
scene, except in areas of calm water where the image SNR is
very low.

The estimates are made after range compression, and option-
ally after the azimuth Fourier transform, which are the most con-
venient places of the processing chain to apply the estimator.
Methods are introduced to reduce the effects of slope variation
with range and partial azimuth exposures. The RCMC/integra-
tion method is not affected at all by these data properties, while
the Radon method is only affected a small amount. The results
are also improved by subtracting the baseband Doppler centroid
and applying SRC when needed.

Quality measures derived from the data and from the esti-
mator results are a useful way of avoiding areas in a scene that
do not give reliable estimates. Removing difficult areas gives
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the estimators a high confidence level when a spatial diversity,
global fitting approach is taken.
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