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Abstract— Most of the recent research on polarimetric SAR
classification focused on pixel-based techniques using the co-
variance matrix representation. Since multiple channels are
inherently provided in polarimetric data, conventional techniques
for increasing the dimensionality of the observation, such as
texture feature extraction, were ignored. In this paper, we
have demonstrated the potential of texture classification through
gray level co-occurrence probabilities (GLCP), and proposed an
unsupervised scheme using the self-organizing map (SOM) neural
network. The increase in separability of the feature space is
shown via the Fisher criterion and also verified by increased
classification performance. Compared to the Wishart classifier,
promising classification results are obtained from the Flevoland
data set.

I. INTRODUCTION

Classification of polarimetric radar data, has been an impor-
tant research topic for the last two decades. Improvements in
understanding the properties of polarimetric data and increased
computational capabilities over this period lead to new space
missions for fully-polarized radar systems (RADARSAT-2 to
be launched in late 2005). Researchers developed new tech-
niques using multi-polarimetric data from airborne platforms,
such as AIRSAR of JPL, trying to find better ways to interpret
this rich source of information.

Since polarimetric data is often multi-looked for speckle
reduction or compression, statistical characteristics of such
data was studied extensively and based on the findings, Lee et
al. [1] used the Wishart distribution to describe the statistics of
the covariance matrix, allowing a maximum likelihood clas-
sification scheme to be developed. Since then, a lot of effort
has been devoted to improve the performance based on this
concept, which is known to utilize the complete polarimetric
information. Cloude’s decomposition was later used to provide
the basis for direct classification of polarimetric data [2], [3].

A recent study [4] on classification of agricultural fields
over Flevoland argues that the statistics for a collection of
homogeneous areas of a class is not necessarily well described
by the Wishart distribution. This limitation is mainly due to the
a-priori assumption of a particular metric, a distance measure
in the multidimensional feature space. Unless the feature space
is separable by this metric, the classifier will perform poorly.
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Since neural network approaches do not make such an as-
sumption, but instead determine this metric during the training
procedure, they can perform better in such cases [5]. In this
study, the self-organizing map (SOM) is used for performing
the classification task [6].

Another motivation is that most of the work in the area
focused on pixel-based classification using the covariance
matrix elements and ignored the spatial information. Given
the complex nature of the problem, we consider feature
extraction to be an important part of this task and propose
to employ gray level co-occurrence probabilities (GLCP)
for texture feature extraction. These features, when used in
addition to the covariance matrix parameters, are expected to
improve the classification accuracy.

II. STUDY AREA AND DATA USED

A multi-look processed L-band AIRSAR data over
Flevoland is used in this study. The ground truth is available
for 13 classes, as shown in Figure 1. From each class, 200
samples were randomly chosen and divided into training and
test sets.

Fig. 1. L-band AIRSAR data and the ground truth of Flevoland



III. TEXTURE FEATURE EXTRACTION

The gray level co-occurrence probabilities (GLCP) provide
second-order statistics for generating texture features. These
represent conditional joint probabilities of all pair wise com-
binations of pixel values in the window of interest. For each
pixel pair, two parameters describe the geometric relationship:
interpixel distance (δ) and orientation (θ). The co-occurrence
probability between gray level i and j, is given by

Pij |(δ, θ) =
Nij∑G

i,j=1 Nij

(1)

where Nij represents the number of occurrences of gray levels
i and j within a window, given a certain (δ,θ) pair and G is
the number of quantized gray levels of the radar measurement
(e.g. covariance matrix elements)

A. Selection of Texture Statistics

Texture measures appropriate for SAR imagery are studied
in [7] which can be categorized in three groups: Smoothness
Statistics, Homogeneity Statistics and Correlation. Selecting
only one from each group is recommended, since they are well
correlated. Following these discussions, three texture measures
are selected:

Contrast
∑

Pij(i − j)2 (2)

Entropy
∑

Pij log(Pij) (3)

Correlation
∑ (i − µx)(j − µy)Pij

σxσy
(4)

The definition for contrast given by [8] is the difference
between the highest and lowest values of a contiguous set of
pixels. Entropy is an homogeneity measure, showing high val-
ues when the image is not texturally uniform and correlation is
expressed by the correlation coefficient between two random
variables, the pixel pair, in this case.

B. Selection of G,δ and θ

The quantization level, G, has various effects on different
texture measures. Although it is expected that finer quanti-
zation would increase the classification accuracy, Clausi [7]
concludes that it is only true for contrast and correlation. In
the case of entropy, high values of G causes fewer repeat-
ing pairs in the grey level co-occurrence matrix (GLCM),
resulting in entropy values closer to 1, as a result separability
and classification accuracy is reduced. The discussion in the
literature on the choice of interpixel distance, δ, recommends
to use 2 [9], [10]. On the other hand, four possible settings
for orientation, θ, (0, 45, 90, 135 degrees), can be used to
discriminate between orientations of features (e.g. lines) in an
image. But if one needs rotation invariant features, averaging
over orientation is appropriate.

C. Selection of the Window Size

Window size is a trade-off between classification accuracy,
and boundary confusion, since using larger window will give
better results for homogenous areas, but fail to detect the
boundaries when there is mixture of classes. To choose an
optimal window size calculating the coefficient of variation
(CV ) in relation to window size is suggested by [11], where
the objective is keeping the window size small and choosing
the value where the CV starts to stabilize.

D. Evaluation of the Extracted Features

The Fisher criterion [12], is used to evaluate the features
in terms of the class separability they provide. This
measure calculates a ratio of between class separability and
within-class variation. Higher values stands for improved
separability, thus better classification performance is expected.

IV. CLASSIFICATION USING THE SELF-ORGANIZING MAP

A. Training of the SOM

A Self-Organizing Map (SOM) is an unsupervised technique
in which the multi-dimensional feature space is mapped onto
a 2D output map and the topology preserves the information
gathered from all the input patterns. Unlike most other neural
network structures, the principle of winner-takes-all is used.
For any input, all neurons compete in terms of their distance to
the input vector and only one output neuron becomes activated,
called the winning neuron. SOM does not try to minimize
an error function based on the expected output, instead the
weights of the winning neuron and its neighborhood change
according to (6).

wij(t + 1) = wij(t) + α(t)γ(t) (xj − wij(t)) (5)

where wij(t + 1) is the winning neuron, xj is the input
vector, α(t) is the learning rate, and γ(t) represents the
neighborhood function. α(t) and γ(t) both decay over time.

The training procedure can be explained as follows:
1. Normalize the input vectors for all samples
2. Initialize the weights with randomly selected input vectors
3. Calculate the activation of each node for the input vector
4. Find the winning neuron (the one with the best activation)
5. Adjust the weights according to (5)
6. Repeat steps 3 - 5 for all the samples
7. Repeat step 6 for the required number of epochs

B. Labeling of the Neurons

After the training is complete, the map has been orga-
nized preserving the topology of the data, but the boundaries
between classes are not yet defined. Since a classification
task will be performed, each output node of the trained map
needs to be assigned to a class, so that when new inputs are
presented, the network will be able to make a decision.

The manual labeling requires the class information of
the training samples, but the only reason to include this



information is to create boundaries in the map and assign
a class to each output node where new input vectors could
later be classified. Therefore the predetermined classification
of the training set will not bias the training process because
it is used only at the end of the training [13].

V. THE PROPOSED ALGORITHM AND RESULTS

A. Speckle Reduction

Most of the times speckle reduction is beneficial for clas-
sification, but for multi-polarized data, it is important to
preserve the polarimetric properties. Therefore, the speckle
filter suggested by Lee et al. [14], is chosen and the window
size is set to 5x5 to preserve the texture information as
recommended.

B. Texture Feature Extraction

As indicated in Section III.A, three texture features, con-
trast, entropy and correlation, are calculated from the GLCP.
Following the discussions in Section III.B, δ = 2 is used and
the gray level quantization (G) is set to 32 as a compromise
between optimum values for entropy and contrast. Since dis-
crimination between different orientations is not our concern,
we used averaging to get rotation invariant features. For the
purpose of window size selection, the coefficient of variation
(CV) for each class is calculated using window sizes from 5x5
to 19x19 to find where CV stabilizes. The optimum window
size was found to vary between 9x9 to 13x13 for different
input features.

C. Evaluation of the Features

The Fisher criterion is used to compare different set of
features in terms of cluster separability. These features are
extracted from inputs, such as the nine independent parameters
from the covariance matrix (Cov9), the eigenvalues (λ1/λ2/λ3)
or entropy, anisotropy, alpha angle (H/A/α) parameters follow-
ing the procedure shown in Figure 2.

The conclusion is that the separability increases with the
use of textural features, which shows promise to utilize this
information for classification. In addition, filtering is found to
increase the performance of pixel values, but decreases the
separability of texture measures, since textural information is
reduced together with the speckle. These graphs are not shown
due to space limitations.

Fig. 2. Proposed scheme for polarimetric SAR classification

D. Classification Results using SOM

A SOM neural network is employed for the classification
task and the results are obtained for feature vectors from
a variety of inputs and window size settings for GLCM
calculation. The graphs of accuracy vs. window size were used
to verify the optimum size, and it was found that changing
the window size to a larger value than 13x13 does not affect
the accuracy a lot. These results agree with the the window
size found by the coefficient of variation and seem to be
an optimum choice for the selected data samples. On the
other hand, using large window sizes will cause confusion
near boundaries, which should be noted as a drawback for
segmentation.

Table 1 shows the classification accuracy values averaged
over a number of trials for the 13x13 window size. The choice
of features and filtering results agree with the Fisher criterion
and show that speckle filtering increases the classification
accuracy only when pixel values are used. The same applies
to contrast, but not to entropy and correlation. In these cases
the accuracy is decreased due to the reduction of texture
information. Similarly when all three texture features are used,
the accuracy is higher for the original unfiltered data.

TABLE I

OVERALL CLASSIFICATION ACCURACY ACHIEVED USING THE PROPOSED

CLASSIFICATION SCHEME

Filter Features H/A/α λ1/λ2/λ3 Cov9* Cov5**
None Pixel value 16.9 26.6 22.6 29.2

Correlation 13.5 19.1 21.5 20.7
Entropy 34.0 60.7 73.9 68.0
Contrast 37.4 62.9 65.1 70.7
Corr/Entr/Cont 34.3 60.3 72.9 67.3
All 4 35.3 61.0 71.9 68.1

5x5 Pixel value 44.0 52.2 46.0 59.5
Correlation 14.2 25.7 25.2 24.9
Entropy 31.3 50.2 47.5 61.1
Contrast 38.9 59.5 70.7 70.2
Corr/Entr/Cont 32.5 54.3 47.5 62.2
All 4 32.8 55.6 47.0 61.2

∗ |HH|2 ,|HV |2 ,|V V |2 , ρHHV V , ρHV V V , ρHV HH , θHHV V , θHV V V , θHV HH
∗∗ |HH|2 , |HV |2 , |V V |2 , ρHHV V , θHHV V

The results obtained without filtering show that when co-
variance matrix is used as the input to the proposed scheme,
accuracies in the range of 65.1 % to 73.9 % are obtained.
If filtered data is used, the highest value (70.7 %) comes
from contrast of Cov9*. The confusion matrix for unfil-
tered data classified by the proposed scheme using Correla-
tion/Entropy/Contrast features of Cov9* is given in Table 2.

For the purpose of comparison, the Bayesian classifier based
on the Wishart distribution is used for the same task resulting
in the confusion matrix given in Table 3 with an overall
accuracy of 65.54 %. If compared to the obtained results
in Table 1, we can argue that the proposed scheme results
in similar or higher accuracies when the covariance matrix
parameters are utilized. When the eigenvalues are used, 62.84
% accuracy is achieved. The use of H/A/alpha for texture
feature extraction is not recommended since the accuracy
compared to the pixel-based classification is decreased.



TABLE II

CONFUSION MATRIX FOR THE PROPOSED SCHEME USING CORRELATION/ENTROPY/CONTRAST OF THE UNFILTERED COV9* PARAMETERS

Water Forest Stem Beans Potatoes Lucerne W. Wheat Peas Sugar Beet Flax Bare Soil Red Beet Grass S. Barley
Water 94 0 0 1 0 0 0 3 2 1 0 0 0
Forest 4 94 0 2 0 0 0 0 0 0 0 0 0
Stem Beans 4 0 96 0 0 0 0 0 0 0 0 0 0
Potatoes 2 1 0 72 0 3 1 12 0 2 4 2 3
Lucerne 5 0 1 1 90 3 0 0 0 0 0 0 1
W. Wheat 5 0 1 2 0 54 1 5 1 14 2 4 12
Peas 0 0 0 0 0 0 100 0 0 0 0 0 0
Sugar Beet 1 1 0 19 0 5 0 35 0 1 35 0 2
Flax 3 0 0 0 0 0 0 0 97 0 0 0 0
Bare Soil 1 0 0 4 0 11 14 2 1 40 2 7 19
Red Beet 2 0 0 1 0 5 0 11 0 3 73 0 5
Grass 0 0 0 3 0 3 0 3 1 13 4 62 11
S. Barley 1 0 0 5 0 22 3 1 0 8 0 19 41

* |HH|2,|HV |2,|V V |2,ρHHV V ,ρHV V V ,ρHV HH , θHHV V ,θHV V V ,θHV HH

Overall accuracy = 72.9

TABLE III

CONFUSION MATRIX FOR THE WISHART CLASSIFIER USING THE COVARIANCE MATRIX AFTER SPECKLE FILTERING WITH A WINDOW SIZE OF 7X7

Water Forest Stem Beans Potatoes Lucerne W. Wheat Peas Sugar Beet Flax Bare Soil Red Beet Grass S. Barley
Water 49 0 0 1 0 1 2 0 45 1 0 1 0
Forest 0 79 0 13 3 0 0 1 0 0 3 0 1
Stem Beans 0 2 97 1 0 0 0 0 0 0 0 0 0
Potatoes 0 20 0 53 0 6 0 6 0 1 13 0 1
Lucerne 0 1 0 0 98 0 0 0 0 2 0 0 0
W. Wheat 0 0 0 1 2 34 8 10 0 9 2 3 31
Peas 0 0 0 0 0 0 99 1 0 0 0 0 0
Sugar Beet 0 2 0 18 0 0 2 54 0 1 23 0 0
Flax 2 0 0 0 0 0 0 0 98 0 0 0 0
Bare Soil 0 0 0 0 1 16 12 3 0 52 0 6 10
Red Beet 0 0 0 0 0 0 2 5 0 0 59 34 0
Grass 0 0 0 0 11 10 0 0 1 0 0 71 7
S. Barley 0 0 0 0 0 19 7 0 0 9 0 56 9

* |HH|2,|HV |2,|V V |2,ρHHV V ,ρHV V V ,ρHV HH , θHHV V ,θHV V V ,θHV HH

Overall accuracy = 65.5

VI. CONCLUSION

In this paper, we have demonstrated the potential of using
texture features obtained from the gray level co-occurrence
probabilities (GLCP) for the classification of polarimetric SAR
data. The increase in separability of the feature space is
shown using the Fisher criterion and also verified with the
classification accuracies obtained. The self-organizing map
(SOM) is used for classification and promising results were
obtained for the sample data set compared to the Wishart
classifier. Further validation with larger data sets is ongoing.
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