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The Effect of Pulse Phase Errors on the Chirp
Scaling SAR Processing Algorithm

Gordon W. Davidson, Member, IEEE, Frank Wong, Member, IEEE, and lan Cumming, Member, IEEE

Abstract— The chirp scaling (CS) SAR processing algorithm
uses the linear FM property of the transmitted pulses to provide
accurate range cell migration correction. However, when the
transmitted pulse is not linear FM, or if the FM rate is not known
exactly, processing errors due to chirp scaling will result. This
paper presents the resulting processing error in the CS algorithm,
given pulse phase errors that exceed those expected in current
SAR systems. The registration and phase error that result in chirp
scaling are negligible for typical or stable pulse phase errors, or
can be avoided if phase modulation coefficients are estimated

“from the replica. A fast Fourier transformed pulse replica is
sufficient to form the range matched filter in the CS algorithm,
giving slightly better range resolution than the range/Doppler
(R/D) algorithm.

I. INTRODUCTION

N image formation from synthetic aperture radar (SAR)

data, the range cell migration correction (RCMC) process-
ing step is a range-dependent signal shift that is required to
compensate for the varying distance from the sensor to a
point scatterer. The range/Doppler (R/D) algorithm [1] uses
a interpolator for this step in the range time and azimuth
frequency domain, which must be truncated at the expense
of accuracy. Chirp scaling (CS) is a new algorithm which
uses the linear FM property of the received, uncompressed
pulses to remove the range dependence of RCMC. Then the
bulk RCMC is performed in the two-dimensional frequency
domain [2], thus avoiding the issue of interpolator truncation.

However, chirp scaling assumes a linear FM pulse of a
known frequency rate, so that phase modulation errors in the
transmitted pulse may affect the accuracy of CS processing.
It is well known that pulse phase errors, if not accounted for
"during pulse compression, lead to range resolution broadening
and increased sidelobe level [3]. Aside from this effect on
pulse compression, pulse phase errors have no further effect
on the R/D algorithm.

In this paper, Section II presents the model for a SAR signal
which includes a general pulse phase error, and the resulting
processing error due to chirp scaling is described in the two-
dimensional frequency domain in Section III. Also, the use

. of a pulse replica to obtain the pulse compression filter is dis-
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cussed, since this may be affected by chirp scaling. Section IV
presents the effects on chirp scaling of quadratic, cubic, and
cyclic pulse phase errors. Simulations verify the calculated
processing errors, and compare the results of processing with
chirp scaling in the presence of phase errors, with the results
of the R/D algorithm.

II. SIGNAL MODEL

Assume that the nominal transmitted pulse is linear FM of
frequency rate K. The deviation of the actual pulse from this
specification is modeled as a phase error €(7), where 7 is range
time, giving the transmitted pulse

‘p(r) = m(7) exp{—jrK1? — j2me(r)} )

where m(7) is the amplitude of the pulse. The phase error is
assumed to be much smaller than the total pulse phase.

Pulse compression can be represented in the frequency
domain as a multiplication by the conjugate of the Fourier
transform of the pulse. It is shown in the Appendix that to
first order, the spectrum of the pulse with a general phase
error can be expressed as

_fr
Ly o

.2
P(f;) = M(f) exp{ T — jane(
where f. is range frequency and M(f) is the amplitude
spectrum. If pulse compression is performed assuming the
nominal transmitted pulse, then the compression error is
represented in the frequency domain by the unmatched phase
term —2mwe(fr/K).

SAR data consists of the backscattered returns of pulses
transmitted while the sensor is at different azimuth (along
track) positions. Both the CS and R/D algorithms perform
certain processing steps in the range time/azimuth frequency
(or R/D) domain, which is obtained by taking an azimuth fast
Fourier transform of the data. Consider the SAR data received
from a single point scatterer at closest approach range, r,
and the corresponding SAR signal in the R/D domain. In this
domain, the SAR signal without pulse phase errors consists of
linear FM signals in the range time direction, at each azimuth
frequency, f,. Including the pulse phase error, the R/D.signal
can be shown to be

5y rin) = Halhirm(52r =) ) exo

. [— Jr K (7 — 78)% — jQWE(%(T - Td))]
3
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Fig. 1. Signal trajectories and effect of chirp scaliﬁg.

‘where H,(fy;r) represents the azimuth phase variation for
azimuth compression. The frequency rate of each signal in
the range direction is described by Ko,(f,;7), where the
modification from K is accommodated by secondary range
compression (SRC) [2]. Also, the phase center of each signal
is delayed in range time, at each azimuth frequency, by an
amount 74(fy;r). This azimuth frequency dependent delay
defines a nearly hyperbolic trajectory of signal energy in the
R/D domain. The trajectory shape depends on the closest
approach range of the scatterer, and the purpose of RCMC
is to straighten the trajectories for scatterers at all ranges.

III. ERRORS IN CHIRP SCALING

In order to implement range variant RCMC in the chirp scal-
ing algorithm, each uncompressed range line in the R/D signal
is multiplied by a chirp scaling phase function. The phase
function is centered on a reference trajectory corresponding to
a reference range, r.o¢, which is typically at midswath. Within
a range line for a given azimuth frequency, this phase function
multiply changes the phase structure of each uncorapressed
pulse, so that a range-dependent shift is achieved in the
location of each pulse after compression, as shown in Fig. 1.
At a given azimuth frequency, f,, the shift for the scatterer at
r depends on the range time difference of the trajectory from
the reference trajectory, A7 (fn;7) = 7a(fa;7) — Ta(fq; Tret)-
This range-dependent shift can be considered as a scaling of
the range-time axis at each azimuth frequency, by a scale
factor, a(f,). For a given scatterer trajectory, the effect of

“the shifts at different azimuth frequencies is to change the
trajectory to the scaled trajectory, shown in Fig. 1, which has
the same shape as the reference trajectory. Thus the scaled
trajectories for scatterers at all ranges have the same shape.
After the phase function multiply in the R/D domain, a Fourier
transform in the range direction takes the data to the two-
dimensional frequency domain, where the bulk range-invariant
RCMC is performed by adding a linear phase term to the range
compression and SRC filters, as described in [2].

A. Pulse Errors

However, the processing assumes linear FM pulses. without
phase modulation errors. By applying the steps of the chirp

scaling algorithm to a SAR signal which includes pulse phase
errors, a phase term in the two-dimensional frequency domain
arises which depends upon &, and thus is not accounted for
during processing. This phase error term is given by

¢€(f7;7f1-;'r) =
—2#5[—fT — En(fysr)lalfs) — AT(foi7)
a(fn)K e

A phase error in the frequency domain such as ¢.(fy, fr;7)
results in image degradation such as impulse response broad-
ening and registration errors [4]. If no chirp scaling is applied,
corresponding to the case of o = 1, then ¢.(f,, fr;7) reduces
to the phase error in the pulse spectrum in (2) and thus
represents the error in pulse compression. With chirp scaling,
the difference between (4) and the pulse compression error
represents the additional processing errors introduced by the
interaction of pulse phase errors with chirp scaling:

A(lsa(fmff;r) =
P —fr — Km(fnir)[a(fn) - 1]A7(f7137)
2 { { O‘(fn)K

~[£) RC)

In general, o(f;) is close to unity, and Ar(f,;7) is related
to range difference of a scatterer from the reference range.
Thus, the azimuth frequency and range dependence of the
processing phase error in (5) is determined mostly by the term

(a(fy) - JAF(fy;1) ©

which is proportional to the amount of shift of the trajectory
for a scatterer at range r. In this term, [o(f,) — 1] is an
indication of the amount of scaling, and as seen in Fig. 1,
this depends on the azimuth frequency difference from the
reference azimuth frequency, f,,, where the scatterer trajec-’
tory and scaled trajectory intersect [2]. Fig. 1 illustrates the
case for f,, = 0, which is useful for relatively small squint
angles since it results in scatterers in the processed image
being registered at closest approach range. In this case, the
scale factor, a(fy), is approximately [1/cos(6,)], where 6,

“
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is the azimuth look direction within the antenna beam that
corresponds to the azimuth frequency, f;,.

Since the processing phase error in (4) depends on azimuth
frequency, the possiblity exists of a coupling of pulse errors
into processing errors in the azimuth direction, in the form
of an azimuth registration error and azimuth impulse response
broadening. However, the processing phase error was calcu-
lated as a function of azimuth frequency, using the spaceborne
SAR parameters discussed in the results below. It was found in
all cases that the total change in phase error across the azimuth
frequency band was less than 8°, which is negligible. Also, the
change in RCMC error across the azimuth frequency band,
given in the results below is very small. Thus, the effect of
pulse phase errors on azimuth focussing can be neglected, and
a one dimensional analysis in the range direction is sufficient.
Because of the very small variation of processing error across
the azimuth frequency band, the effect of the scale factor,
a(f,), on processing error can be described as a function of
the squint angle, 6, to beam center. In the results presented
below, a squint angle of 5° is used, with f,, = 0 to give a
worst case amount of scaling for conventional SAR.

Finally, if a replica of the transmitted pulse in (1) is
available, then it can be used to improve the accuracy of range
compression. The replica can be fast Fourier transformed to
get the pulse spectrum, P(f), and the range matched filter
is then obtained by multiplying P(f.) by phase factors to
accommodate SRC and the change in range frequency rate
caused by chirp scaling [2]. The information about the pulse
phase modulation error in this case is through the presence in
the replica of the phase error term, as described in (2), so the
remaining processing error is the additional error due to chirp
scaling in (5). An effect of using the fast Fourier transformed
replica is that the magnitude of P(f.) is included in the
range matched filter. In chirp scaling, the multiplication of
the signal by the phase function introduces a range-dependent
range frequency shift in the signal:

§fr = —[ofn) = UKm(fo3; 1)AT(f17). @

Thus, when the range matched filter multiply is applied in
the range frequency domain, some frequency components of
the signal are shifted outside of the interval spanned by the
magnitude of P(f;). The result is a small loss of range
bandwidth. The frequency shift itself is later removed by the
phase correction step in chirp scaling in the R/D domain [2].

Alternatively, phase -modulation coefficients can be es-
timated from the replica. In this case, an accurate value
of frequency rate can be used in chirp scaling. A cubic
phase modulation- error, even if known, may still result in
a processing error because of the deviation from the linear
FM assumption in chirp scaling. Also, with this use of the
replica, the range matched filter can be calculated from the
phase modulation coefficients, and an appropriate magnitude
weighting chosen so as to avoid the loss of range bandwidth
to the frequency shift in chirp scaling.

B. Range-Dependence Errors

While the main source of errors considered in this paper
is the phase error in the transmitted pulse, there exists a

similar error that is inherent in the R/D signal. This is
the range dependence of the frequency rate, K., (f,;r), of
the linear FM signals in the range Doppler domain. In the
chirp scaling algorithm, the scaling and range compression
(including SRC) is performed at each azimuth frequency, so
the f, dependence of K,,,(f,;7) is accommodated. However,
the algorithm assumes a range-invariant frequency rate in SRC
and in the chirp scaling phase function, where the frequency
rate is determined at a reference range, r.or [2]. Thus, for a
scatterer at range, r, a frequency rate error is introduced in
the R/D domain. From (3) it can be seen that this can be
represented by the equivalent pulse phase error

K
.
K2 (fo57)

with the same effects on range compression and chirp scaling
as a frequency rate error in the transmitted pulse.

However, for the spaceborne SAR parameters and the
5° squint angle considered in the results below, the range
dependence of K, (fy;7) is quite small. For L-band, the
maximum quadratic phase error for a scatterers at the swath
edge is about 12°, and for C-band it is about 3°. This is too
small to affect chirp scaling, as will be seen in the results. In
range compression, the effect on resolution width is negligible,
and since the variation of K, is known, any phase error in the
compressed pulse can be compensated by a complex multiply.
For higher squint angles, the range dependence of K,,(f,;7)
can affect range compression and chirp scaling, and in this case
the extended chirp scaling algorithm presented in [5] may be
used.

e(r) = [Km(fnST) - Km(an"'ref)] ®

IV. RESULTS

In this section, quadratic, cubic, and cyclic pulse phase
errors are considered in the calculation and simulation of
processing errors, since these are adequate to represent the
transmitted pulse phase for most sensors [6]. Pulse phase errors
that exceed those expected in SAR systems are investigated,
in order to get worst case results.

For quadratic and cubic pulse phase errors, the resulting
processing error in (4) is calculated, where the processing
error is expressed as a sum of phase terms in powers of
range frequency, fr, where the terms correspond to errors
in pulse compression, RCMC, and phase of the compressed
pulse. The calculations use L-band and C-band spaceborne
SAR parameters, with a squint angle of 5° and f,, = 0.
Some processing errors are range dependent, being zero at the
reference range and increasing toward the edge of the swath.
Thus the scatterer is assumed to be at the swath edge, 20 km in
slant range from the reference range. In addition, at the swath
edge the maximum range frequency shift due to chirp scaling
in each case is less than 1.7% of the range bandwidth.

The simulations are used to verify the calculations and to
compare the processing results of the CS and R/D algorithms
for quadratic, cubic, and cyclic pulse phase errors. In the sim-
ulations, only L-band parameters are used since the processing
errors are slightly larger than for C-band. The signal received
from a point scatterer is simulated with a rectangular weighted
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pulse, and the range signal is assumed to be oversampled
by 15%. The simulated signal is processed with the CS and
R/D algorithms, where in the R/D algorithm an eight-point
interpolator is used in RCMC. Also, the SRC filter is calculated
accurately for both algorithms, so that this comparison of
the CS and R/D algorithms does not reflect the difference
in SRC between the algorithms (i.e., the accommodation of
azimuth frequency dependent SRC in the CS algorithm). The
simulation results for quadratic, cubic, and cyclic phase errors
are shown in Figs. 2 to 4, respectively, which show the
magnitude plots of the range compressed pulse at the edge of
the azimuth frequency band, processed with the CS (solid line)
and R/D (dashed line) algorithms. The resulting compressed
pulse in range is used to measure: the 3-dB resolution width
in samples, registration error in samples, maximum sidelobe
level, or integrated sidelobe ratio (ISLR) in decibels, and the
phase error in degrees at the peak of the compressed pulse.

A. Quadratic Phase Error
An error in frequency rate, AK, results in a quadratic puise
phase error that is modeled by
AK7?
e(r) = 5
The total processing phase error. in the two-dimensional fre-
quency domain is evaluated using (4):

®

TAK , 20AKKn,
¢€:_a2K2f7'_ aQKz (a—]‘)ATfT
2
- EAf———}me(a —1)2Ar2, (10)
(84 .

The processing errors were investigated for a frequency rate
error in the transmitted pulse which would give a maximum
quadratic phase error, in the absence of chirp scaling, of 96°.
The range compression error term in (10) (the first term) is
very close to the pulse spectrum phase error in the absence of
chirp scaling: a difference in maximum quadratic phase error
of about one degree. Thus the fast Fourier transformed pulse
replica can effectively remove the range compression error.
The maximum RCMC shift error (the second term) varies
across the azimuth frequency band by 0.01 range samples
for L-band, and 0.002 samples for C-band, and thus has a
negligible effect on focussing. The RCMC shift error at the
Doppler centroid gives the range-dependent registration error,
which for each case is less than 0.04 samples at the swath
edge. Finally, the constant phase error (the third term) is very
small, being less than 0.2°. .

The simulation results for this case are shown in Fig. 2,
where results are given for the cases of a) no replica is used in
pulse compression and b) a fast Fourier transformed replica is
used to obtain the compression filter. When the pulse replica is
fast Fourier transformed to obtain the range matched filter, the
compression error is removed in both algorithms. Also, in this
case the registration error in chirp scaling is just measureable,
being about 0.05 samples at the swath edge. There is a
slightly better resolution with the CS algorithm, because it
does not suffer the bandwidth loss due to the interpolator in
the R/D algorithm, for the given range oversampling rate and

range-Doppler:

_res. = 1.096 samp.
reg. = 0.00 samp.
sidelobe =-9.3 dB
phase = -28.5 deg |

dB | chirp scaling:

res. =1.075 samp.
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6
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T T
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res. = 1.028 samp. res. = 1.037 samp.
-5} reg. = 0.06 samp. reg. = 0.0 samp. =
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§
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Fig. 2. Magnitude of compressed range pulses processed with the chirp
scaling (solid line) and R/D {dashed line) algorithms. Transmitted pulse had
a quadratic phase error: (a) no replica; (b) fast Fourier transformed replica
used to obtain matched filter.

interpolator length. On the other hand, with the CS algorithm
some bandwidth is lost because of the frequency shift in chirp
scaling. However, considering both these effects, the results in
Fig. 2 show a slightly better resolution for the CS algorithm
than for the R/D algorithm. : : '

B. Cubic Phase Error

Next, consider a small deviation from linear FM in the.
transmitted pulse, represented by a cubic phase term

ACT®
e(r) = 3

an

Evaluating ¢.(fy, f;7) with this pulse phase error gives
the processing phase error in the two-dimensional frequency.
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domain as
2rAC 2rACK,
belfn, frir) = 5575 2+ s (= DATf?
2rACK?2,
W(a - 1)2A’7'2f7-
2 3
%@(a —1)3Ar3, (12)

These processing errors were evaluated for a value of AC

which gives a maximum cubic phase error in the transmitted
pulse of 90°. The cubic range compression term (the first term
in (12)) differs from the pulse spectrum phase error in (2) by
a maximum of 1.5°, so a fast Fourier transformed replica can
be used to perform range compression. The quadratic term
(the second, term) is range dependent, and evaluated at the
swath edge it gives a maximum quadratic phase error of 11°
for L-band or C-band. This is too small to affect focussing
but results in range dependent phase error in the peak of the
range compressed pulse. The RCMC shift error (the third term)
varies across the azimuth frequency band by less than 0.001
samples for L-band, and less than 0.0003 samples for C-band,
and the registration error at the swath edge in each case is
0.002 samples, which is negligible. Finally, the constant phase
error (the last term) is very small.

The simulation results are shown in Fig. 3, and results
are given for the cases of: a) no replica; b) a fast Fourier
transformed replica; and c) the matched filter calculated from
phase coefficients known from simulation of the pulse (as if
the accurate coefficients had been estimated from the replica).
Comparing Fig. 3(a) and (b), it is seen that using a fast
Fourier transformed replica to obtain the range matched filter
successfully removes the compression error that results from
the cubic phase error in the transmitted pulse. The registration
error due to chirp scaling is too small to be measured, and
the CS algorithm gives a slight improvement in resolution
over the R/D algorithm. The resolution with chirp scaling
improves further when the range matched filter is calculated
using coefficients obtained from the replica, since in this case
the loss of bandwidth due to the frequency shift in chirp
scaling is avoided.. The CS algorithm has a phase error in
the compressed pulse of about 3° at the swath edge, which
is due to the range dependent quadratic phase compression
error resulting from the interaction of chirp scaling with the
cubic pulse phase. If phase coefficients are estimated from
the replica, this phase can be determined and removed by a
complex multiply.

C. Cyclic Phase Error

The effect of a cyclic pulse phase error on processing with
chirp scaling can be deduced from the form of (4). Note that
d(fn, fr;7) is a shifted version of the pulse spectrum error,
—2m &(—fr/K), as a function of f,. For a cyclic pulse phase
error, such a shift does not change the nature of the processing
error, compared to the pulse compression error, or introduce
other types of image degradations. Thus, chirp scaling should
not have a noticeable affect on processing with this type of
pulse phase error.

To investigate a cyclic phase error, a pulse was simulated
with a phase error:

e(r) = AYsin(wr) 13)
where w was chosen to give ten cycles over the length of
the pulse, and AY was chosen to give a relatively large peak
phase error of 15°. The results of are shown in Fig. 4, for the
cases of no replica and the use of a fast Fourier transformed
replica. From ‘the result with no replica it can be seen that
the pulse phase error itself does not affect the performance
of the CS algorithm compared to the R/D algorithm, although
the results are slightly different because of the interpolator
used in the R/D algorithm. The use of a replica does not"
remove the echoes in either algorithm, and this is because of
the effect of the pulse phase error on the amplitude spectrum,
which is not remedied by matched filtering. However, when
the replica is used, there is a noticeable difference between
the algorithms in the form of the echos of the compressed
pulse, and the CS algorithm has a higher value of ISLR. This
is due to the shifting of the signal phase spectrum by chirp
scaling which causes a mismatch with the phase of the fast
Fourier transformed replica. Thus, with chirp scaling, some
phase error remains after compression which leads to a slightly
higher echo, although for typical cyclical phase errors this
effect should be small.

V. DISCUSSION

A. Processing Errors in Chirp Scaling

From the results presented above, the worst case effect of
a maximum 90° quadratic pulse phase error on chirp scaling
is a registration error that reaches about 0.05 range samples
by the edge of the swath. The effect of maximum 90° cubic
pulse phase error on chirp scaling is a range dependent,
maximum 11° quadratic phase error, which is too small to
affect resolution but results in a 3° compressed pulse phase
error at the swath edge. The highest order phase error term in
the range matched filter is not significantly affected by chirp
scaling, so that a fast Fourier transformed pulse replica can be
used in range compression.

For the pulse phase errors and SAR parameters considered
here, these registration and phase errors are too small to affect
the quality of the magnitude image, but may be noticeable
in SAR interferometry. In interferometry, the phases of two
images of the same scene are compared in order to infer

‘terrain  height, and accurate registration and phase of the

images is essential [7]. However, if the transmitted pulse
is stable between images, then the processing errors are
consistent between the images and do not affect interferometric
processing. Finally, the registration and phase error can be
avoided if phase modulation coefficients are estimated from
the pulse replica. In this case, the frequency rate is known
accurately so the registration error due to a quadratic pulse
phase error is avoided, and the compressed pulse phase error
due to the cubic pulse phase error can be determined and
removed by a complex multiply.
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Fig. 3. Magnitude of compressed range pulses processed with the chirp scaling (solid line) and R/D (dashed line) algorithms. Transmitted pulse had a
cubic phase error: (a) no replica; (b) fast Fourier transformed replica used to obtain matched filter; (c) matched filter calculated from phase coefficients

obtained - from replica.

B. Chirp Scaling Sensitivity

Results of calculations and simulations are given above
for particular values of pulse phase error, squint, reference
azimuth frequency, and distance from the reference range.
However, from (9) to (13), the general sensitivity of the CS
algorithm' to pulse phase errors and SAR parameters can be
inferred. :

The noticeable processing errors due to chirp scaling dis-
cussed above vary linearly with the pulse phase error coeffi-
cients, AK, AC, or AY. This linear variation of processing
error is much slower than, say, the increase in resolution
broadening due to a pulse compression error as a function
of the pulse phase error coefficient [8]. Thus, the processing
error in the CS algorithm remains relatively small, even as
the pulse phase error increases to values that correpond to
large compression errors. For example, consider doubling the

quadratic and cubic pulse phase errors considered above,
giving very large maximum pulse phase errors.of 180° that
are unlikely to occur in practice. In the case of doubling
the frequency rate error, the result would be a doubling of
the registration error to about 0.1 samples at the swath edge.
The compression error with a fast Fourier transformed replica -
would still be too small to be noticed. In the case of doubling
the cubic phase error, the compressed pulse phase error would
approximately double to 6° at the swath edge, and resolution.
broadening due cubic or quadratic compression errors would
be still be negligible. Thus, even for these very large pulse
phase errors, the overall effect on processing remains the
same. That is, although large enough to affect interferometry,
the processing errors either can be neglected if the pulse is
stable, or can be avoided if phase modulation coefficients are
estimated.
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Fig. 4. Magnitude of compressed range pulses processed with the chirp
scaling (solid line) and R/D (dashed line) algorithms. Transmitted pulse had
a cyclic phase error: (a) no replica; (b) fast Fourier transformed replica used
to obtain matched filter.

The registration and phase error described above vary
linearly with [(@ — 1)A7], that is, with the amount of scaling
and with distance from the reference range. These processing
errors are determined at 20 km in slant range from the
reference range, but the linear variation with range means the
errors would remain relatively small for larger range blocks.
Also, as mentioned earlier, the dependence of processing error
on the amount of scaling means a dependence on the squint
angle, 8. For f,, = 0, using small angle approximations it can
be shown that (o« — 1) varies as #2. Thus, for squint angles
larger than the 5° considered here, the processing errors would
quickly become more significant if f,. remained at zero.
Thus for higher squint, the reference azimuth frequency would
have to change to remain within a certain interval of azimuth
frequency from the Doppler centroid. The consequence of this

is that the processed image would not be registered at closest
approach range.

Finally, other smaller processing errors from (10) and (12)
vary with [(e—1)A7]2, and thus would increase more quickly
with range and scaling. However, the errors are so small
that they would remain negligible for a wide range of SAR
parameters.

VI. CONCLUSION

From the point of view of high precision SAR processing,
for applications such as interferometry, the most noticeable
effects of pulse phase errors on the chirp scaling algorithm
are a registration and a phase error in the compressed pulse.
However, these are negligible for the relatively small pulse
phase errors typical in SAR systems. Larger pulse phase errors
have no noticeable effect on the magnitude image, and can
be neglected in interferometry if the pulse is stable. Also, the
registration and phase error can be avoided in any case if phase
modulation coefficients are estimated from the pulse replica.

In addition, it was found that the effect of pulse phase
errors on range compression with the chirp scaling algorithm is
negligible. A fast Fourier transformed pulse replica is sufficient
to obtain the range matched filter, with the CS algorithm giving
a slight improvement in range resolution compared to the R/D
algorithm.

APPENDIX
PULSE SPECTRUM WITH ARBITRARY
PHASE MODULATION ERROR

It is required to find the Fourier transform of the transmitted
pulse as a function of the general small pulse phase error as
in (1). For large time-bandwidth pulses such as used in SAR,
the method of stationary phase provides an approximation to
the Fourier transform [3]. To accommodate the general phase
error-in the pulse, the following approximation to the method
of stationary phase has been developed. The Fourier transform
of the transmitted pulse requires evaluation of the integral

P(f;) = /m(r) exp{—jr K 7% — j2m e(T) — 52r fr T} dT
(14)

and the equation for the stationary point is
Kr+ée(r)+fr = 0.

To take advantage of the fact that the pulse error is small
compared to the pulse phase, let £(7) be represented as

(15)

e(r) = ep(7) (16)

where € is a small parameter.

An approximate solution for the stationary point can be
found by iterating, assuming ¢ is small, where 7 is first solved
for as follows:

T o _fT _ —E-p,( _—f‘r

T~ K KK

Then, since ¢ is small in the argument of p’, the second term
can be expanded in a'series about —f,/K to give

an

- 27 (0).

— — 2 —
T e o P Y o)

(18)
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Proceeding in this way, it can be seen that higher order
terms in the approximation decrease as higher powers of the
small parameter ¢/K, thus forming an asymptotic expansion
for the stationary point. Keeping only the first term in ¢ and
substituting for the stationary point in the integrand gives an
approximation for the Fourier transform of the pulse

_ . : 2 —
m( IJ;T ) exp {EKjf- }’? )} a9

where constants and the effect of e(7) on the amplitude have
been neglected. ‘

This approximation to the Fourier transfrom is valid for
signals for which the method of stationary phase can be used,
and for pulse phase errors for which the approximation to the
stationary point in (18) can be made. Equation (18) requires the
existence of the derivatives of p(7), which in general is not a
problem for bandlimited pulses. In particular, for polynominal
pulse phase errors, the derivatives exist and (18) gives a series
with terms that decrease quickly if the ratio of the pulse phase
error to total pulse phase is small. For other pulse phase errors
the derivatives may become large, as for the case of a cyclic
pulse phase error in (13) with a large w. In this case, terms
past a certain order in the asymptotic expansion may begin
to increase, although the approximation can still be used for
small pulse phase errors.

P(f) = —j2me(
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