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Abstract:  This paper proposes a new algorithm referred to as the Wavelet Packet-based
Embedded Block coding (WPEB) scheme for SAR data compression.  This algorithm
combines the following properties:  (1) wavelet packet decomposition is adopted to
exploit middle and high frequency components associated with SAR data;  (2) block
coding is utilized to improve DWT coefficient coding efficiency by adaptively allocating
more bits to regions of importance with higher information content (e.g. more contrast,
edges); (3) speckle reduction is built into the bit allocation scheme by using wavelet
transform denoising.  Examples are given using RADARSAT data, which show that the
compression performance is better than conventional wavelet methods and visual image
interpretation is acceptable at 1 bpp.

1.   Introduction

         SAR image data can provide unique information about the surface of the Earth [1].
The volume of data associated with Earth information is so huge that the compression of
SAR data becomes crucial to transmission and archiving.

         At present, most image compression algorithms are designed for standard test
images, usually optical images [2, 4, 5].  The most popular algorithms for still image
compression are those included in the JPEG/JPEG2000 standard.  These algorithms are
designed to compress traditional images, and do not lead to ideal compression results for
SAR images.  This is because these compression schemes are not designed to account for
SAR data characteristics, such as high dynamic range, the speckle phenomena, and the
presence of significant high frequency components arising from terrain texture and edges.

         WPEB belongs to the class of lossy transform compression algorithms.  Our coding
scheme includes the wavelet packet transform [3], embedded block coding, speckle
reduction, and optimal bit allocation.  We consider the SAR data spectrum in wavelet
analysis and bit allocation in order to achieve better compression performance and make
this algorithm more flexible when compressing different types of SAR data (ocean, snow,
ice, city, forest, agriculture, mountains, etc), and satisfying different compression
evaluation criteria.

         A block diagram for WPEB encoding and decoding is shown in Figure 1.  At the
encoder, the discrete wavelet packet transform is applied to the source image after it is
divided into blocks.  The transform coefficients are then quantized and entropy coded to
form the output sequence.  The decoder is the reverse of the encoder, consisting of
entropy decoding, inverse quantization, and an inverse wavelet packet transform.
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                         (a)  Encoding                                                 (b)  Decoding

Figure 1.   Block diagram of WPEB compression algorithm.

2.   Wavelet Packet Decomposition

         SAR data usually have significant middle and high frequency components, as in
regions with textures and edges; this makes the wavelet packet transform a better choice
than the standard discrete wavelet transform (DWT) for SAR data compression.  Wavelet
packet decomposition differs from the standard wavelet transform by allowing the
decomposition of the upper frequency bands as well as the lower ones.  By this method,
wavelet packets can be used to achieve a more accurate representation and compression
of the medium and high frequency information in SAR images.

         In previous work of SAR image compression [6], texture analysis is based on sub-
band energy at different decomposition levels.  The total energy ESB of each sub-band is
defined as:
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where x(m,n) is the wavelet coefficient set at a given decomposition level.  Because the
low-low sub-band normally has the maximum energy, we call its energy Eref and compare
the energy of other sub-bands with it.  A constant  Csb < 1  is used as the criterion for
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applying another level of wavelet packet decomposition.  When the energy Esb of a given
sub-band is greater than CSB Eref, wavelet packets are applied to further decompose the
higher frequencies.

         For our algorithm, a biorthogonal wavelet [3] is selected because of its linear phase
property, and because edge symmetry can be obtained using symmetrical extension.
Since all test images are normalized to a zero mean before the DWT is applied, the
energy measure ESB is simply the sub-band variance.  At each decomposition stage, the
wavelet packet analysis proceeds as follows:

(1)  Initialize HLC , LHC , HHC , and set the maximum decomposition level.

(2)  Apply a DWT, to obtain the four sub-band coefficients, LL, LH, HL and HH.
(3)  Calculate the variance for each sub-band, ESB.
(4)  If   ELH > CLH Eref,  then apply a DWT to LH.
(5)  If   EHL > CHL Eref,  then apply a DWT to HL.
(6)  If   EHH > CHH Eref,  then apply a DWT to HH.
(7)  Apply a DWT to LL.
(8)  If the decomposition level is reached, stop;  otherwise go to step (3).

3    Embedded Block Coding

           It is known that block transform coders enjoy success because of their low
complexity and their effective performance.  The most popular block transform coder is
JPEG, which utilizes the 8x8 Discrete Cosine Transform (DCT).

         The general idea behind block coding is that the image can be divided into blocks,
so that wavelet decomposition, quantization and coding can be applied to smaller sections
of the image, rather than to the whole image at once.  In this way, different number of
bits can be allocated to each block so that the overall image SNR is maximized.

          Generally, large image blocks lead to smaller mean squared error in the sense that
the correlation within larger block samples can be exploited more fully in compression.
This is true for optical images with correlation coefficients as high as 0.95, but not so true
for SAR images where the correlation coefficients are usually below 0.7.

         The advantages of using block coding include the following:

         (1)  Different statistics of each block can be recognized.  The statistics, such as
dynamic data range and entropy, affect coding performance in the sense that the data
range is associated with quantization steps, and entropy is associated with the maximum
compression ratio for a given image block.

         (2)  The flexibility of assigning different number of bits to each block is possible,
within the constraint of a specified total number of bits per image.

         On the other hand, the disadvantages of blocking include discontinuities and
artifacts across the block boundaries, especially at very low bit rates.  The choice of block
size is a compromise between  (1) obtaining good compression within a block and
avoiding block artifacts (favors larger block sizes), and  (2) adaptation to block statistics
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and computing efficiency (favors smaller block sizes).  In practice, we found that a block
size between 128 and 256 to be appropriate for SAR images.

         Generally, we apply an embedded blocking algorithm by designing a bit allocation
scheme to adaptively assign different numbers of bits to image regions based on
importance.  This is a practical problem when dealing with images containing many types
of scene features.  For example, if the SAR image is used for sea-ice classification, an
ideal compression scheme preserves texture regions that represent different types of ice
(first year ice, multi year ice, etc.).  Some regions of an image contain features not of
interest, such as land areas in sea ice images, and thus we can assign fewer bits to these
regions.

4    Bit Allocation Scheme With Speckle Reduction

         In this subsection, we explain the bit allocation problem mathematically.  Since the
image is composed of a collection of coded blocks Bi, with embedded bit streams that
may be truncated at a rate Ri

n, the corresponding contribution to the distortion in the
reconstructed image is denoted as Di

n for each truncation point ni.  The relevant distortion
matrix is additive:
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where D is the total distortion for the reconstructed image, and ni is the truncation level
giving iB bits for block i. From the rate distortion optimization point of view, the problem
is to find the optimal selection of in  so as to minimize the overall distortion D, subject to
a constraint, R, where R is the allowed bit rate for the whole image.

         If the image is compressed as a single block, the overall distortion is equal to the
block distortion. For a specific encoding algorithm, the rate-distortion curve is monotonic
with only one parameter, the compression ratio or the truncation point ni, as shown in
Figure 2(a).

         If the image is divided into two blocks, then overall optimization can be obtained by
searching the minimum MSE as shown in Figure 2(b).  If bppT is the total allowed bpp,
and bppi is the bpp of block i, then we search for the optimal bpp1 given the constraint
that
                    bppT  =  bbp1 + bpp2                                                                                     (3)

        The vertical axis in Figure 2(b) is the distortion for the whole image at a given bppT.
It is interesting to note that the distortion curve for a specific compression ratio for the
whole image is a “U” shape, with a unique minimum.  The U shape arises because for
each block, the rate-distortion curve is convex, which means the slope of the curve
decreases as the bpp value increases.  Therefore for the overall distortion curve, the slope
decreases on the left side of the U shape, and increases on the right side of the U shape.
In other words, if we assign too many bits (or too few bits) to block 1, the overall
compression performance will drop.  Also there is no guarantee the U shape is
symmetric.  Symmetry occurs when two blocks have the same rate-distortion curve.
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      MSE                                                                 MSE

                                                           bpp1                                                             bpp1

                        (a)  one block is used                               (b)  two blocks are used

Figure 2.   Rate-distortion curves for one and two blocks.

         Another parameter affecting bit allocation is speckle reduction.  We use hard-
thresholding to reduce speckle, depending upon the block dynamic range [7].  For blocks
with high speckle noise, more aggressive hard thresholding reduces the number of bits
used.

4.1    Blocks of Importance

          Blocks that contain important features for classification or detection should be
assigned more bits.  If {B1, B2, ….Bn} is the number of bits for each image block, and BT
is the total number of bits specified by R, then:
                            BT  =  B1 + B2  +  …  + Bn                                                             (4)
          Suppose that each block is the same size, and that each is compressed at the same
ratio; then we could expect  B1 = B2 = … = Bn.  However, it is possible in some
applications (such as the “region of interest” feature in JPEG2000) that the number of bits
assigned to each block differs, especially when different image blocks have completely
different local statistics.

4.2   Dynamic Data Range

          As each block can have a different dynamic range, we define a Data Dynamic
Range (DDR) set {d1, d2, …dn} to represent this information.  Since the wavelet
transform is a linear, the image block that has a large data range also contains a large
range of wavelet coefficients.  In order to encode these coefficients with as little
distortion as possible, we need to increase the quantization level by decreasing the
decision step, and allocate more bits to this block.

5   Experimental Results

         Experiments are done on a test image shown in Figure 5(a).  The raw data were
acquired in February 1998 by RADARSAT-1, and processed in July 1999 by Radarsat
International.  The scene includes Vancouver airport and surrounding urban areas. The
comparison between the WPEB and SPIHT algorithms [4] is used to demonstrate the
merits of our compression algorithm.
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         In the experiment, the test image of 512x1024 pixels is divided into two blocks of
the same size (512x512).  The variance of the left block is 1330, while the variance of the
right block is 5340, and the variance for the whole image is 4350.

5.1. Bit Allocation Results

         The optimal bit allocation can be obtained by searching the minima of the rate-
distortion curve at specific overall compression ratios, as shown in Figure 3.  The search
results are shown in Table 1.  It was found that the optimal compression ratio for each
block is not the same as for the whole image for the 2-block scene.

          In practice, the search is inefficient when the image is divided into many blocks.
However, it was found that a simple statistical measure such as block standard deviation
was able to give a near-optimal bit allocation.

Table 1   Optimal compression ratio for two blocks

Overall 0.5 bpp 1.0 bpp 1.5 bpp 2.0 bpp
Left block 0.3 bpp 0.6 bpp 1.1 bpp 1.6 bpp
Right block 0.7 bpp 1.4 bpp 1.9 bpp 2.4 bpp

 Figure 3.   Search for the optimal bit allocation between two blocks.
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          The four curves in Figure 3 show the rate-distortion curves for average bit rates of
0.5 bpp, 1.0 bpp, 1.5 bpp, 2.0 bpp, respectively. The horizontal axis shows the
compression ratio for Block 1, and the vertical axis is the MSE for the whole image.  The
bpp value for Block 2 is given by equation (3).

5.2   MSE Results

         In order to compare the performance of the WPEB algorithm fairly, it is useful to
compare it against the SPIHT algorithm applied over the whole image, and the SPIHT
applied using two blocks (but with the same number of bits in each block).  The MSE
results for the SPIHT, averaged 2-block SPIHT (ASPIHT) and WPEB algorithms are
shown in Figure 4.  The MSE for WPEB is 25% lower than that for 1-block SPIHT, and
12% lower than the 2-block SPIHT.  The improvement of the 2-block SPIHT over the 1-
block SPIHT is further evidence of the advantages of blocking.

         The reconstructed images at 1.0 bpp for the SPIHT and WPEB algorithms are
shown in Figure 5.  The WPEB image is visually better than the SPIHT image.  In the left
block, more details are observed in the water in the WPEB case, even though fewer bits
are used.  Also block artifacts can be seen in the water in the SPIHT case.  In the right
block, the city and airport details of the WPEB case are closer to those in the original
image than the SPIHT case.

6.   Conclusions

         Our compression algorithm has two main strengths.  First, we use wavelet packet
decomposition to better represent SAR imagery’s significant middle and high frequency
components.  Second, we utilize a block coding scheme to exploit statistical properties,
such as the activity level or energy compaction, of each block.  Our experimental results
show that this coding scheme gives a lower MSE than traditional wavelet methods and is
promising for SAR image compression.
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Figure 4.   MSE results of SPIHT and WPEB encoding of the test image.
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(a)  Original RADARSAT-1 image of Vancouver airport

              
(b)  SPIHT algorithm

              
(c)  WPEB algorithm

Figure 5.   Compression results for SPIHT and WPEB at 1.0 bpp.


