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ABSTRACT 1 — This paper presents a Fourier
interpretation of the Omega-k SAR processing al-
gorithm that helps explain the key Stolt mapping
operation. An approximate form of the algorithm
is sometimes used, and we explain how both forms
of the ωKA compare with the range Doppler and
the chirp scaling algorithms. Finally, a brief dis-
cussion is given on which radar parameters allow
the accurate use of each algorithm.
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1 Introduction

The Omega-K (ωKA), range Doppler (RDA) and chirp
scaling algorithms (CSA) are the three most common pre-
cision SAR processing algorithms used for satellite remote
sensing data. In order for these algorithms to be imple-
mented efficiently, they use different approximations. The
RDA and CSA discard some of the higher order phase
terms in their processing, with the result that the range-
azimuth coupling is not accurately compensated when the
aperture is wide or the squint angle is large.

The ωKA handles the range dependence of the range-
azimuth coupling correctly, which gives it the ability to
process data acquired over wide azimuth apertures or high
squint angles. This is because the data are processed en-
tirely in the two-dimensional frequency domain, where
the approximations used in the CSA and RDA are not
needed. However, the ωKA does make another approx-
imation, which hinders its ability to handle large range
swaths rather than its ability to handle wide apertures.

In this paper, a overview of ωKA is presented, con-
centrating on its unique interpolation step, referred to as
Stolt mapping. In this one operation, the residual Range
Cell Migration Correction (RCMC), secondary range com-
pression (SRC) and azimuth compression are done simul-
taneously. New Fourier interpretations of the Stolt map-
ping are given, which help explain the components of the
mapping.

1 This work is supported by the MacDonald Dettwiler/NSERC
Industrial Research Chair in Radar Remote Sensing.

2 Overview of the ωKA

Block diagrams of accurate and approximate implemen-
tations of the ωKA algorithm are given in Figure 1.
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Figure 1: Block diagram of the ωKA

The accurate form of the algorithm consists of the fol-
lowing major steps:

1. FFTs are performed to transform the SAR signal
data into the 2-D frequency domain. Assuming a
hyperbolic form of the range equation, the resulting
phase from a point target is

θ2Df(fτ , fη) = − 4πR0

c
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where fτ and fη are the range and azimuth fre-
quencies, R0 is the range of closest approach, f0 is
the radar center frequency and Kr is the FM rate



of the linear chirp signal. Vr is the effective radar
velocity and c is the speed of light. The phase (1)
includes the target phase due to the range encoding,
range cell migration (RCM), range-azimuth coupling,
and azimuth encoding.

2. The first focusing step is a reference function multiply
(RFM). The reference function is computed for a se-
lected range, Rref . A target at the reference range is
correctly focused by the RFM, but targets away from
that range are only partially focused. For this reason,
the RFM can be considered as a “bulk compression”.

After the RFM filtering, the phase remaining in the
two-dimensional signal spectrum is approximately

θRFM(fτ , fη) ≈ −4π(R0−Rref)
c
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3. The second focusing step is the Stolt mapping or
interpolation [1]. It completes the focusing of tar-
gets away from the reference range by re-mapping
the range frequency axis according to

√
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= f0 + f ′τ (3)

To understand the Stolt mapping, the square root
term on the LHS of (3) can be expanded to get
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plus higher order terms. If only the (f0+fτ ) term ex-
isted on the RHS of (4), an inverse range DFT would
give perfect range compression and registration, as
the IDFT of a sine wave is a sinc function and the
frequency (i.e. registration) would not depend on fη.
But the extra terms in (4) represent residual misfo-
cusing.

To achieve perfect range compression and registra-
tion, the mapping (3) transforms the original range
frequency variable fτ into the new range frequency
variable f ′τ . In this way, the phase is now linear in
the new range frequency variable f

′
τ

θStolt(f ′τ , fη) = − 4π (R0 −Rref)
c

(f0 + f ′τ ) (5)

and the range IDFT will result in perfect range com-
pression and registration. The mapping has effec-
tively removed all the phase terms higher than lin-
ear term, which also implements the residual azimuth
phase and range-azimuth coupling. For this reason,
the Stolt mapping can be viewed as “differential com-
pression”.

Note that the higher order phase terms of (4) have
not been ignored, some of which are discarded in the
CSA and RDA. For this reason, the ωKA is accu-
rate even when the SAR aperture is very wide or the
squint angle is large, as long as the hyperbolic range
equation is accurate.

4. Finally a two-dimensional IDFT is performed to
transform the data back to the time domain, i.e. the
SAR image domain.

3 Interpretations of the Mapping

Several interpretations of the Stolt mapping exist for seis-
mic processing [2]. In this section, an alternative interpre-
tation is given, taken from a signal processing viewpoint.
It uses the Fourier transform shift/modulation property,
and helps explain how the mapping of the range frequency
axis (3) performs the remaining focusing operations.

The phase (2) that remains after the RFM repre-
sents the residual RCM, azimuth modulation and range-
azimuth coupling. These terms are mixed in the square
root term, and are corrected simultaneously by the Stolt
mapping. In order to understand how all these corrections
can be done in one step, consider the expanded form of
the phase after RFM

θRFM(fτ , fη) ≈ − 4π (R0−Rref)
c

...

[
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where terms up to quadratic in fτ and fη are kept. The
quantity D(fη) is the range migration parameter

D(fη) =

√
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(7)

To simplify the discussion, the residual range-azimuth
coupling can be ignored, leaving the dominant terms of
residual azimuth modulation and residual RCM

θRFM(fτ , fη) ≈ −2π ∆τ

{
f0 D(fη) +

fτ

D(fη)

}
(8)

where ∆τ = 2(R0−Rref)/c is the range “time” measured
from the reference range.

These two largest terms illustrate two distinct features
of the Stolt mapping, the scaling and shifting. After the
RFM, the phase is linear in the range frequency direction,
but the “frequency” of the waveform varies with azimuth
frequency. This is illustrated in Figure 2, where Panel (a)
shows the real part of the point target signal (showing
the phase contours of (8)), and the horizontal slices in
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(a)  Data after RFM
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(d)   Scaled data  
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(g)  Shifted data  
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Figure 2: Interpretation of the scaling (row 2) and shifting
(row 3) operations within the Stolt mapping

Panel (b) show how the waveform is a sine wave but with
a “frequency” varying with azimuth frequency.

The frequency observed in the horizontal slices of Panel
(b) represents the range position of the target, which be-
comes evident when the range IDFT is taken. This is
shown in the thick line in Panel (c), where the residual
RCM can be seen. Also, a quadratic phase is observed in
the azimuth direction, as shown in the vertical slice (the
thin line in Panel (c)). The quadratic phase represents
azimuth modulation due to residual RCM and azimuth
focusing.

In order to help understand Stolt mapping, it is broken
down into two steps, corresponding to differential RCMC
and azimuth compression.

3.1 Interpreting Differential RCMC

The residual RCM is represented by the second term of
(8). The “frequency” of the waveform along the range fre-
quency axis depends on fη, as seen by the approximation

fτ

D(fη)
≈ fτ
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c2 f2
η
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)
(9)

If the range frequency axis is re-mapped so that fτ/D(fη)
is replaced by f ′τ1

, the resultant phase becomes

θRFM,1(f ′τ1
, fη) = −2π ∆τ

[
f ′τ1

+ f0 D(fη)
]

(10)

This component of the Stolt mapping involves a stretching
of the range frequency axis by the factor D. The resultant
phase is shown in Panel (d), and the horizontal slices of
Panel (e) show that the “frequency” of the waveform is
now independent of fη. Then the subsequent range IDFT
registers the data to a constant range, as shown in Panel
(f), thereby accomplishing differential RCMC. But the az-
imuth modulation is still present, as seen in the thin line
of Panel (f).

3.2 Interpreting Azimuth Compression

To consider the residual azimuth modulation, note that
the mapping component of first term in (8) represents a
shift of the range frequency variable by the amount

fτshift = f0 [D(fη)− 1 ] ≈ − c2 f2
η

8 V 2
r f0

(11)

The phase resulting from this range frequency shift is
shown in Panel (g). The shift removes the quadratic com-
ponent of Panel (f), resulting in a phase that is now lin-
ear in both range frequency and azimuth frequency. This
means that the residual azimuth compression has been
done by this component of the Stolt mapping.

Replacing the terms of (8) by

f0 + f ′τ = f0 D(fη) +
fτ

D(fη)
(12)

and combining (9) and (11), we see that the Stolt mapping
of the frequency variable f ′τ consists primarily of a scaling
and a shifting

f ′τ = f ′τ1
+ fτshift (13)

which implements the differential RCMC and azimuth
compression simultaneously. Although not involved in
this interpretation, the residual range-azimuth coupling is
also corrected by the accurate form of the mapping (3).

4 Approximate Form of the ωKA

Although the Stolt mapping looks simple mathematically,
each sample in (f

′
τ , fη) space has to be individually in-

terpolated to obtain the modified 2-D frequency domain
signal. This is a time consuming step, but the approxi-
mate form of the ωKA shown in Figure 1 offers a simpler
solution.

After RFM step, there are three main phase compo-
nents (6), and the dominant one is the residual azimuth
modulation. In the approximate version of ωKA, the
smaller differential RCMC and SRC components are ig-
nored [3, 4, 5]. This means that the differential azimuth
compression can be implemented by a simple shift of the
range frequency axis, as described in Section 3.2. This is



easier, as the shift can be implemented simply by a phase
rotation in the range Doppler domain.

This approximation means that the residual RCM and
range-azimuth coupling are assumed to be independent of
range, a feasible assumption if the SAR aperture is not too
wide and the squint is low. To see if the approximation is
sufficiently accurate, the phase error in the approximation

√
(f0 + fτ )2 − c2 f2

η

4 V 2
r

≈ (f0 + fτ ) − c2 f2
η

8 V 2
r f2

0

(14)

can be examined for the radar parameters under consid-
eration. Equation (14) is obtained by modifying (4) ac-
cording to the azimuth compression shift (11).

Comparison with the RDA and CSA

Some comparisons of the ωKA with other processing
algorithms can be found in [4, 6]. Here are some further
thoughts:

RDA: In the accurate version of the RDA, SRC is
applied with an azimuth frequency dependence, but with-
out a range dependence. The approximate version of the
ωKA applies SRC with the same dependencies, because
SRC is only applied in the 2-D frequency domain with the
RFM. However, the RDA is often used in its less accurate
form where SRC is not varied with range or azimuth fre-
quency.

In terms of RCMC, the RDA uses a range dependent
RCMC, while the approximate ωKA uses a range invari-
ant RCMC. Also, it is interesting to note that Vr can be
allowed to vary with range in the RDA and in the ap-
proximate version of the ωKA, but not in the “accurate”
ωKA.

CSA: In the CSA, the chirp scaling operation per-
forms differential RCMC, but not differential SRC, and
its residual azimuth compression allows Vr to vary. In
this sense, its accuracy lies between the accurate and ap-
proximate versions of the ωKA. In fact, the approximate
version of the ωKA is equivalent to the CSA without the
chirp scaling operation.

5 Discussion of Errors

The use of a constant Vr in the ωKA introduces errors
in RCMC, SRC and azimuth matched filtering. The dom-
inant error comes from the linear RCM. For an exposure
time of Ta, a squint angle of θsq, and a velocity error of
∆Vr, the linear migration error is

∆RCMlinear = ∆Vr sin θsq Ta (15)

The constant Vr approximation is valid for airborne but
not for satellite cases. For a typical C-band satellite SAR,

where Vr varies by 0.5% over 100 km, the residual RCM is
less than 1 m. This is small compared to the processed res-
olutions. However, the error is 4 times larger for L-band
satellites, and can become significant when the swaths are
wider and the resolution is finer, so these cases should be
evaluated individually.

The approximate version of the ωKA assumes a range
invariant RCMC and SRC [4], and once again the residual
RCM is the dominant error. Its maximum value is several
meters for typical SARs, satellite or airborne. This error
is likely allowable for current satellite SARs, but probably
not for airborne SARs that have finer resolutions.

6 Conclusions

We have discussed two versions of the ωKA, and com-
pared them to the CSA and RDA. Unlike the RDA and
CSA, the differential focusing of the ωKA is done in the
two dimensional frequency domain, using an interpolation
operation. This is an unusual operation in the signal pro-
cessing field, and requires some explanation.

The differential focusing corrects for the range variation
of RCM, range/azimuth coupling and the azimuth FM
rate in the SAR signal. By examining each component
separately, we show how the range frequency interpolation
or mapping corrects each of the range-variant parts of the
focusing.

The ωKA proves to be very accurate for most wide-
aperture, high-squint situations. However, some approx-
imations have to be made, notably the constant velocity
assumption, which makes their error properties different
from the RDA and CSA. This affects which SAR process-
ing algorithm should be chosen for each imaging case.
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