
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 46, NO. 9, SEPTEMBER 2008 2481

A Comparison of Point Target Spectra Derived
for Bistatic SAR Processing
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Abstract—The existence of a double hyperbola in the bistatic
range equation makes it difficult to find an exact analytical so-
lution for the 2-D point target spectrum. Several approximate
solutions for the spectrum have been derived and used to focus
bistatic synthetic aperture radar data. In this paper, we estab-
lish the relationship between three independently derived bistatic
point target spectra. The first spectrum is Loffeld’s bistatic for-
mula, which consists of a quasi-monostatic and a bistatic phase
term. The second spectrum makes use of Rocca’s smile operator,
which transforms bistatic data in a defined configuration to a
monostatic equivalent. The third spectrum is derived using a
power series—called the method of series reversion (MSR). The
MSR spectrum is the most general among the three. This paper
shows that this spectrum can be reduced to the same formulation
as the former two when certain conditions are met. In addition,
a new approximate spectrum is derived using a Taylor series
expansion about the two stationary phase points of the transmitter
and receiver. We also give an alternative geometrical proof of the
relationship between Rocca’s smile operator and Loffeld’s bistatic
deformation term. The accuracies of the point target spectra are
demonstrated using simulations of an X-band bistatic airborne
radar with a fixed baseline.

Index Terms—Bistatic synthetic aperture radar (SAR),
Loffeld’s bistatic formula (LBF), Rocca’s smile, series reversion,
2-D spectrum.

I. INTRODUCTION

THE FORMULATION of a point target spectrum is a key
step in deriving synthetic aperture radar (SAR) focusing

algorithms, which exploits the processing efficiency of the
frequency domain [1]. The general bistatic SAR range equation
has two square roots, referred to as the double-square-root
(DSR) term. This DSR term makes it difficult to apply the
method of stationary phase [2] directly in order to obtain an
analytical solution for the 2-D spectrum.

A survey of the literature shows that there are three generic
approaches to dealing with this inversion problem. The first
method is to solve the problem by modeling the SAR transfer
function numerically [3]–[6]. These methods tend to be more
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computationally intensive than methods that use analytical
models of the spectrum.

The second approach is to transform the bistatic data to a
monostatic equivalent. In [7] and [8], a convolution operator
called Rocca’s smile is used, which is based upon the technique
of dip move out (DMO) [9]. In [6], Bamler et al. investigate
an equivalent velocity to model the bistatic configuration with
a monostatic equivalent. However, any method that reduces to
a monostatic configuration may not be accurate for extreme
bistatic cases because the sum of the two square roots generally
cannot be scaled into a single hyperbolic function, i.e., a single
square root [3], [10], [11].

The third method is to solve for the 2-D spectrum directly by
using the method of stationary phase. An approximate analyti-
cal solution for the general bistatic 2-D frequency spectrum has
been proposed in [11]. Its relationship with the DMO method
is presented in [12]. Notably, several algorithms have been for-
mulated based on Loffeld’s bistatic formula (LBF) [13], [14].
Recently, a power series method [15] for the general bistatic
case has been formulated. The spectrum of a single point target
is derived based on the method of series reversion (MSR) [16],
which gives a more accurate formulation of the stationary point
in the form of a power series. The accuracy of this method is
“scalable” in the sense that its accuracy depends on the number
of terms used in the power series. We refer to this method of
deriving the bistatic spectrum as MSR.

This paper shows the relationships between three methods
used to derive the 2-D bistatic spectrum: the LBF, DMO,
and MSR methods. We begin with a short discussion of a
general bistatic signal model in Section II, where we introduce
common notations that are used for each of the signal spectra.
Next, we give brief derivations and short descriptions of the
MSR (Section II-B) and LBF (Section II-C) methods. Then, in
Section III, we introduce a new method of deriving the spec-
trum, the two-stationary-phase-point (TSPP) method, and use it
to describe algebraically how the LBF and MSR spectra relate
to one another. We illustrate their relation using simulations in
Section IV. In the Appendix, we give a geometric interpretation
of the DMO method, and in Section V, we use a geometrical
proof to define a relationship between the LBF and DMO
methods. Simulations are performed in Section VI to illustrate
the focusing accuracies of the LBF, DMO, and MSR forms of
the spectrum.

II. TWO-DIMENSIONAL BISTATIC SPECTRUM

In this section, we briefly introduce a bistatic SAR signal
model and summarize two methods of formulating the bistatic
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Fig. 1. Signal and image data in a bistatic configuration.

spectrum—the LBF of [11] and the MSR of [15]. The ap-
proaches of both formulations are similar: An analytical func-
tion in frequency is derived by using the method of stationary
phase [2]. The accuracy of the spectrum differs in the two cases
because of the different assumptions used.

A. Bistatic SAR Signal Model

The point target spectrum used in this paper is based on a
2-D spectrum of the reference point target derived in [15] and
repeated here for convenience

S(fτ , fη) ≈ Wr(fτ )Waz

(
fη + (fo + fτ )

k1

c

)
× exp {−j [φT (η(fη)) + φR (η(fη))]} (1)

where Wr represents the spectral shape of the transmitted pulse
and Waz represents the shape of the received Doppler spectrum.
The parameter k1 is the first derivative of the expanded range
equation in azimuth time η, which is given in [15]. The variable
fη is the azimuth frequency, fτ is the range frequency, fo is
the carrier frequency, and c is the speed of light. The variable
η(fη) contains the relationship between azimuth frequency fη

and azimuth time η, which is found by solving for the stationary
phase point [2].

The geometry of the bistatic SAR data collection is shown
in Fig. 1. R is the instantaneous range to the point target, and
the subscripts “T” and “R” refer to the transmitter and receiver,
respectively. The subscript “cen” refers to the geometry at time
η = 0, i.e., the “Doppler centroid” time when the target is in
the center of the combined beam. At this time, the ranges to
the target are RTcen and RRcen, and the squint angles are θsqT

and θsqR.
The variable φT is the transmitter-based phase term, and φR

is the receiver-based phase term in the spectrum [(1)], which
are given by

φT(η) = 2π
(fo + fτ )

c
RT(η) + πfηη (2)

φR(η) = 2π
(fo + fτ )

c
RR(η) + πfηη. (3)

Each of the two range functions RT and RR has a hyperbolic
form, and the sum of the two functions gives rise to the
DSR form of the bistatic range function R = RT + RR. For
simplicity, we have dropped the fη dependence of η in these
and subsequent equations.

While an approximate analytical solution exists for η(fη)
in the monostatic case [17], no simple analytical solution is
available for this time–frequency relationship in the bistatic
case. The problem lies in the inversion of the DSR. In the
following two sections, we briefly examine how the MSR and
LBF derivations of the bistatic spectra handle the inversion
problem.

B. Two-Dimensional Spectrum Derived Using the MSR

The MSR expands the phase history around the beam center
at zero azimuth time [15]. By expanding the instantaneous
bistatic range R(η) in azimuth time as a Taylor series around
η = 0 and solving for the bistatic stationary phase point by
using the series reversion formula [15], [16], a power series
representation of η(fη) (which we denote by η̃b) is obtained

η̃b = A1

(
− cfη

fo + fτ
− k1

)
+ A2

(
− cfη

fo + fτ
− k1

)2

+A3

(
− cfη

fo + fτ
− k1

)3

+ · · · (4)

and the coefficients are given by

A1 =
1

2k2

A2 = − 3k3

8k3
2

A3 =
9k2

3 − 4k2k4

16k5
2

· · · (5)

where the derivatives k2, k3, and k4 of the expanded version of
the range equation in azimuth time η are given in [15] and

kN = kTN + kRN =
{

dNRT(η)
dηN

+
dNRR(η)

dηN

}∣∣∣∣
η=0

,

where N ∈ Z+. (6)

Substituting η̃b for η(fη) in (1), the bistatic spectrum derived
using the MSR can be written as

S(fτ , fη) ≈ Wr(fτ )Waz

(
fη + (fo + fτ )

k1

c

)
× exp {−j [φT(η̃b) + φR(η̃b)]} . (7)

The accuracy of this spectrum is affected by the number of
terms used in the expansion [(4)]. This is a key feature of the
MSR formulation. For a higher resolution, a wider aperture, or
a larger bistatic angle, more phase terms need to be retained to
achieve a specified level of accuracy in the spectrum [15].
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C. LBF

Loffeld et al. [11] derived an approximate analytical solution
for the point target response in the 2-D frequency domain by
applying a Taylor series expansion to the one-way phase terms
φT(η) and φR(η) in (2) and (3), respectively. The monostatic
phase functions are expanded about their individual monostatic
stationary phase points up to the second-order phase term,
which allows the bistatic point target spectrum to be approxi-
mated by

S(fτ , fη) ≈Wr(fτ )Waz

(
fη+(fo+fτ )

k1

c

)
× exp {−j [φT(η̃T)+φR(η̃R)]}
×

∫
exp

{
−j

[
φ̇T(η̃T)(η − η̃T)

+ φ̇R(η̃R)(η − η̃R)
]}

dη

×
∫

exp
{
− j

2

[
φ̈T(η̃T)(η − η̃T)2

+ φ̈R(η̃R)(η − η̃R)2
]}

dη (8)

where η̃T and η̃R are the solutions to the individual stationary
phases of the transmitter and receiver phase histories, respec-
tively. The terms φ̇T(η̃T) and φ̇R(η̃R) are both zero, as η̃T and
η̃R are the stationary points of the transmitter and receiver phase
histories, respectively. Thus, the first integral in (8) vanishes.

Equation (8) can be simplified by using the fact that the sum
of two quadratic functions is a shifted and scaled quadratic
function

a(x − b)2 + c(x − d)2

= (a + c)
[
x − ab + cd

a + c

]2

+
[

ac

a + c
(b − d)2

]
. (9)

Applying this fact and using the substitutions a = φ̈T(η̃T), c =
φ̈R(η̃R), x = η, b = η̃T, and d = η̃R, the last integral in (8) can
be shown to be

I(fη) =
∫

exp

{
− j

2

{
φ̈T(η̃T)φ̈R(η̃R)

φ̈T(η̃T) + φ̈R(η̃R)
(η̃T − η̃R)2

+
[
φ̈T(η̃T) + φ̈R(η̃R)

]
× (η − η̂b)2

}}
dη (10)

where

η̂b =
φ̈T(η̃T)η̃T + φ̈R(η̃R)η̃R

φ̈T(η̃T) + φ̈R(η̃R)
. (11)

Applying the method of stationary phase to (10), the approx-
imate stationary phase point is given by η̂b, and the spectrum is
given by (ignoring any amplitude variations)

S2(fτ , fη) ≈Wr(fτ )Waz

(
fη + (fo + fτ )

k1

c

)
× exp {−jΨ1(fτ , fη)}

× exp
{
− j

2
Ψ2(fτ , fη)

}
(12)

where

Ψ1(fτ , fη) =φT(η̃T) + φR(η̃R) (13)

Ψ2(fτ , fη) =
φ̈T(η̃T)φ̈R(η̃R)

φ̈T(η̃T) + φ̈R(η̃R)
(η̃T − η̃R)2. (14)

The first exponential term Ψ1 is known as the quasi-monostatic
term, whereas the second exponential term Ψ2 is known as
the bistatic deformation term. Unlike the MSR formulation of
Section II-B, the accuracy of this spectrum is restricted by
the limited number of terms used in (8) (it is a second-order
expansion).

III. LINK BETWEEN THE LBF AND MSR SPECTRA

In this section, we show that the spectrum derived using
the MSR in Section II-B is a generalization of the LBF of
Section II-C.

A. Analytical Development

Beginning with the bistatic phase term in (7), if we do Taylor
series expansions of the phase term φT(η̃b) about η̃T and the
phase term φR(η̃b) about η̃R [where η̃b is the bistatic stationary
point defined in (4)], the phase of the MSR formulation in (7)
becomes

φT(η̃b) + φR(η̃b) = φT(η̃T + ∆η̃T) + φR(η̃R + ∆η̃R)

= φT(η̃T) + φR(η̃R)

+
1
2

(
∆η̃2

Tφ̈T(η̃T) + ∆η̃2
Rφ̈R(η̃R)

)
+

1
3!

(
∆η̃3

Tφ¨̇T) + ∆η̃3
Rφ¨̇R(η̃R)

)
· · · (15)

where

∆η̃T = η̃b − η̃T (16)

∆η̃R = η̃b − η̃R. (17)

The terms on the right-hand side of (16) and (17) are the
azimuth times measured from the respective stationary phase
points of the transmitter and receiver. Note that φ̇R(η̃R) and
φ̇T(η̃T) are both zero because of the definition of the stationary
points. As a result, they do not appear in (15).

The phases on the left-hand side of (15) represent the MSR
in (7). The expansion on the right-hand side of (15) is the
formulation leading to the link with the LBF. This formulation
is new, and we refer to it as the TSPP method.

The TSPP formulation of the bistatic spectrum has a pair of
quasi-monostatic phase terms that are the same as the quasi-
monostatic phase terms in LBF (14). If we approximate1 η̃b by

1Note that η̃b is the stationary point or the azimuth time/frequency relation-
ship using MSR. η̂b is a mathematical approximation of η̃b derived using LBF.
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η̂b and consider only the quadratic terms in (15), the sum of the
quadratic phase terms becomes

1
2

[
∆η̃2

Tφ̈T(η̃T) + ∆η̃2
Rφ̈R(η̃R)

]
≈ 1

2

[
(η̂b − η̃T)2φ̈T(η̃T) + (η̂b − η̃R)2φ̈R(η̃R)

]
. (18)

Using the results in (9), the sum of these quadratic phase
terms is equivalent to the bistatic deformation term in (12) when
the condition η̃b ≈ η̂b holds, i.e.,

1
2

[
(η̂b − η̃T)2φ̈T(η̃T) + (η̂b − η̃R)2φ̈R(η̃R)

]
≈ 1

2
φ̈T(η̃T)φ̈R(η̃R)

φ̈T(η̃T) + φ̈R(η̃R)
(η̃T − η̃R)2. (19)

The expression on the right-hand side of (19) is equal to Ψ2/2
of (14). Thus, the LBF is shown to be a special case of the point
target spectrum formulation of the MSR given in (15).

B. Observations on Bistatic Configurations

The LBF method is accurate under two conditions. The first
condition is that the higher order phase terms of (15) must
be negligible because there is a truncation of the azimuth
phase power series before applying the method of stationary
phase. This limitation has been discussed in [11] and becomes
significant at wider aperture, longer wavelength, and/or extreme
bistatic cases.

Another necessary condition for the LBF to be valid is for
η̃b ≈ η̂b. This condition determines the type of bistatic config-
urations that the LBF is able to focus. Due to the complexity
of (4) and (11) and the wide range of configurations available
for bistatic platforms, it is difficult to determine these bistatic
configurations analytically.

Instead of considering the validity of the approximation
over all azimuth frequencies, we can simplify the analysis
by just considering the mean azimuth frequency (the Doppler
centroid). That is, we assume that η̃b(fηc

) ≈ η̂b(fηc
), where fηc

is the mean azimuth frequency

fηc
= −fo + fτ

c
k1. (20)

Substituting fηc
for fη in (4) causes all the terms in the brackets

to become zero, and the mean value of the bistatic stationary
point η̃b(fηc

) also becomes zero. Thus, from (11), and assuming
that η̃b(fηc

) ≈ η̂b(fηc
), we have

[
φ̈T(η̃T)η̃T + φ̈R(η̃R)η̃R

] ∣∣∣
fη=fηc

≈ 0. (21)

A power series representation of the stationary point η̃T can be
derived from (4) by setting the receiver-based derivatives kRN’s

to be equal to the transmitter-based derivatives kTN’s in (6),
giving

η̃T =B1

(
− cfη

fo + fτ
−2kT1

)
+B2

(
− cfη

fo + fτ
−2kT1

)2

+ · · ·
(22)

where the coefficients are given by

B1 =
1

4kT2

B2 = − 3kT3

32k3
T2

B3 =
9k2

T3 − 4kT2kT4

128k5
T2

· · · . (23)

A similar expression for η̃R can be derived from (4) by set-
ting the transmitter-based derivatives kTN’s to be equal to the
receiver-based derivatives kRN’s in (6).

Substituting this pair of stationary points into (21) and con-
sidering only the first two terms in the power series, it can be
shown that the condition η̃b(fηc

) ≈ η̂b(fηc
) simplifies to

(
kT3

k2
T2

+
kR3

k2
R2

)
(kR1 − kT1)2 ≈ 0. (24)

Using condition (24), the bistatic configurations where the LBF
would work well can be determined. This condition is satisfied
when the value inside either bracket is approximately zero.

Consider the case where the value of the second bracket in
(24) is zero. A trivial case that satisfies this condition is the
monostatic configuration where kR1 = kT1. Bistatic cases that
have a short baseline relative to the slant ranges would also fall
into this category because kR1 ≈ kT1. This condition is also
satisfied when kR1 ≈ 0 and kT1 ≈ 0, i.e., when both antennas
are pointing roughly at broadside.

The value in the first bracket is approximately zero when the
platforms are flying with the same velocity along the same flight
path (the leader–follower or tandem configuration) and with the
squint angle of the transmitter approximately the negative of the
squint angle of the receiver (θsqT ≈ −θsqR). In such a case,
the condition is satisfied as kR3 ≈ −kT3 and kR2 ≈ kT2, and
the LBF results are accurate (see results in Section VI-B).

It should be noted that (24) does not show all possible bistatic
configurations where LBF is applicable. However, it is a good
guide to determine some possible configurations where LBF
is valid.

IV. SIMULATIONS—PART 1 (LBF, TSPP, AND MSR)

In this section, we simulate three equal-velocity parallel-
track stationary cases, with both platforms operating in
stripmap mode, to compare and verify the accuracy of the point
target spectra between the LBF, TSPP, and MSR methods.
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TABLE I
SIMULATION PARAMETERS FOR PART 1

A. Simulation Parameters

In each case, a single point target is simulated using the
airborne SAR parameters given in Table I. The three cases differ
in the squint angles simulated.

B. Simulation Results

The results of the simulations are shown in Figs. 2–4.
Rectangular weighting is used for both azimuth and range
processing to simplify the interpretation of results. The ideal
impulse response width (IRW) is 1.06 samples in both range
and azimuth. The ideal peak sidelobe ratio (PSLR) is −13.3 dB,
and the ideal integrated sidelobe ratio (ISLR) is −10.0 dB.

Cases of low, moderate, and high squints are discussed in
the next three sections. The range responses are not shown, as
the point targets are well focused in range for all the cases. The
range IRWs differ from the theoretical values by less than 1%,
and the PSLR and ISLR differ from the theoretical values by
less than 1 dB.
1) Case I: Low Squint (5◦): This first simulation is a bistatic

formation, with both antennas pointing near broadside. Fig. 2(a)
shows the point target focused using the LBF. Fig. 2(b) shows
the same point target focused using the TSPP spectrum given
in (15), which is expanded up to the quadratic term. The linear
phase terms kT1 and kR1 are small in such a case; therefore, the
condition in (24) holds, and η̃b ≈ η̂b. Thus, the focusing results
in Fig. 2(a) and (b) do not differ significantly.

Fig. 2(c) shows the results, with the TSPP spectrum being
expanded up to the cubic term, showing a small improvement
over Fig. 2(b).
2) Case II: Moderate Squint (10◦): In the second simula-

tion, both antennas are squinted to a point where conditions (24)

and η̃b ≈ η̂b no longer hold. The point target focused using the
LBF in Fig. 3(a) is poorly focused. Fig. 3(b) shows the same
point target focused using the TSPP spectrum given in (15),
which is expanded up to the quadratic term. The TSPP focusing
is much better than the LBF, with only a small degradation over
the 5◦ squint TSPP case of Fig. 2(b). An improved result can
be obtained by including the cubic phase term in the TSPP
expansion, as shown in Fig. 3(c).
3) Case III: High Squint (20◦): Finally, for cases with a

more extreme bistatic configuration,2 there is a large difference
in the location of the stationary phase points between η̃b and
each of η̃T and η̃R, and the LBF cannot focus the data. Also,
more terms would be required in the TSPP approach of (15)
to focus the point target, making such an approach inefficient.
Fig. 4(a) shows that, even with a TSPP expansion up to the
sixth-order term, the target is still poorly focused. However, the
point target can be focused by expanding η̃b in (4) to the third-
order term and then processing the spectrum derived using the
MSR of (7). Proper focusing is achieved, as shown in Fig. 4(b).

C. Discussion

We introduced the TSPP method in Section III-A to show
the relation between the methods of deriving the LBF and MSR
spectra. However, the results of this section show why we do
not recommend the use of the TSPP in the general bistatic case.
Instead, we recommend that the MSR be used for more extreme
bistatic configurations.

V. BISTATIC DEFORMATION TERM AND ROCCA’S SMILE

The existence of the quasi-monostatic and bistatic phase
terms in (12) and (15) suggests a two-step focusing approach
for the LBF: the removal of the bistatic deformation followed
by the application of a quasi-monostatic focusing step [11].
Such a two-step method is similar to the DMO algorithm put
forward by D’Aria et al. [7], which uses Rocca’s smile operator.
In this section, a geometrical proof is given to show how the
LBF bistatic deformation term, Ψ2 in (14), is linked to Rocca’s
smile operator for the “constant offset” case of the tandem
configuration (a stationary case).

A. Link Between LBF and Rocca’s Smile Operator

A geometrical method [7], borrowed from seismic reflection
surveying [9], is used to transform a bistatic configuration to a
monostatic one. The bistatic platforms are restricted to traveling
along the same path with equal and constant velocities, as
shown in Fig. 5.

For this tandem case, Rocca’s smile operator transforms the
bistatic data to a monostatic equivalent, which corresponds to
a single platform located at the midpoint of the two bistatic
platforms. To do this transformation, range shift and phase

2Some authors use the term “high bistatic degree” to refer to extreme bistatic
configurations. In our context, the bistatic degree refers to the magnitude of
the difference between the location of the two stationary phase points. This
parameter determines the complexity of the bistatic case in our analysis.
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Fig. 2. Azimuth impulse responses for the LBF and two TSPP forms. (a) LBF. (b) TSPP (quadratic). (c) TSPP (cubic).

Fig. 3. Azimuth impulse responses for the LBF and two TSPP forms. (a) LBF. (b) TSPP (quadratic). (c) TSPP (cubic).

Fig. 4. Azimuth impulse responses. (a) Using the TSPP (up to the sixth-order
term). (b) Using the MSR.

compensation are required—the shift corresponds to the travel
time difference between the two geometries, which is given by

tDMO(θsq) = tb(θsq) − tm(θsq) (25)

where tb is the bistatic round-trip travel time from the transmit-
ter to the point target back to the receiver and tm is the round-
trip travel time between the equivalent monostatic antenna and
the point target. The bistatic range to an arbitrary point is always
greater than the two-way monostatic range to the same point, as
shown in Fig. 6.

Fig. 5. Geometry of the bistatic tandem configuration.

Fig. 6. Squint-dependent travel time of the bistatic and equivalent monostatic
configurations.
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In the Appendix, it is shown that the travel times are re-
lated by

t2b(θsq) ≈ t2m(θsq) +
4h2

c2
cos2 θsq (26)

tDMO(θsq) ≈
2h2 cos2 θsq

c2tb
. (27)

The bistatic platforms are at a constant offset of 2h from each
other, and θsq is the squint angle of the equivalent monostatic
configuration.

The derivations given in [7] show that the bistatic config-
uration can be transformed to the monostatic configuration
by applying small negative delays tDMO’s as a function of
monostatic squint θsq. Applying these negative delays is akin
to convolving the bistatic data with the smile operator (the
“negative delays” decrease tb to tm). It was shown in [7] that
the smile operator in the 2-D frequency domain for the constant
offset case is

H(fτ , fη)≈ exp

{
j (2π(fo+fτ )) tb

[
1−

√
1− 4h2 cos2 θsq

t2bc
2

]}

≈ exp
{

j (2π(fo+fτ ))
[
2h2 cos2 θsq

tbc2

]}
≈ exp{j (2π(fo+fτ )) tDMO(θsq)} (28)

where

cos2 θsq = 1 −
f2

η c2

4V 2
r (fo + fτ )2

. (29)

The geometric relation in (29) is also derived in [1]. These
equations are given in [7] but are expressed here in the notations
defined in Section II.

Natroshvili and Loffeld [18] showed that Rocca’s smile
operator becomes the LBF bistatic deformation term by using
two approximations

tb ≈
2Ro

c
(30)

F
3
2 = FF

1
2 ≈ F (fτ + fo) (31)

where

F = (fτ + fo)2 −
f2

nc2

4V 2
r

(32)

and Ro is the common range of the closest approach for both
the transmitter and receiver. Although not said in [18], it can be
shown that the approximation in (31) is equivalent to assuming
that cos2 θsq is approximately equal to cos3 θsq.

By substituting (29)–(31) into (28) and after some algebraic
manipulation, the smile operator can be written as

Ha(fτ , fη) ≈ exp {jφa(fτ , fη)} (33)

where

φa(fτ , fη) = 2π(fτ + fo)
h2 cos3 θsq

Roc

=
2π(fτ + fo)h2

Roc

[
1 − f2

nc2

4V 2
r (fτ + fo)2

] 3
2

. (34)

In [11], it was shown that, for the constant offset case, the
LBF bistatic deformation term in (14) can be expressed by

Ψ2(fτ , fη) ≈ 2π(fτ + fo)h2

Roc

[
1 − f2

nc2

4V 2
r (fτ + fo)2

] 3
2

. (35)

Thus, smile operator (28) is equal to the bistatic deformation
term for the constant offset, tandem case (34), with the approx-
imations (30) and (31).

To arrive at (35), we find that the approximation in (31) is not
necessary. Instead of (30), we can use

tb ≈
2Ro

c cos θsq
. (36)

Geometrically, approximation (36) estimates the slant ranges
from the transmitter and receiver to the point target by twice
the slant range from the equivalent monostatic platform in the
middle of the baseline, i.e., tb ≈ 2Rm/c. This approximation
is adequate when the baseline is small compared to the bistatic
range, 2h/Ro � 1/ cos θsq.

Note that approximation (36) gives a more direct, but equiv-
alent, way of deriving phase (35) than using the two ap-
proximations (30) and (31). This is because the cos θsq term
that is missing in (30) is recovered in (31), which uses the
approximation cos2 θsq ≈ cos3 θsq.

In essence, Rocca’s smile operator can be viewed as a type of
bistatic deformation term used in the LBF. Therefore, Rocca’s
smile operator can be paired with the quasi-monostatic term
from the LBF to formulate an alternative point target spectrum.

B. Geometrical Proof of Rocca’s Smile Operator

As seen from the geometry of Figs. 5 and 6, we can represent
the bistatic and monostatic travel times by

tb(θsq) =
Ro

c cos θsqT
+

Ro

c cos θsqR
(37)

tm(θsq) =
2Ro

c cos θsq
. (38)

Applying the cosine rule to the triangles in Fig. 5, we have

Ro

cos θsqT
=

Ro

cos θsq

[
1 +

h cos2 θsq

R2
o

(
h +

2Ro sin θsq

cos θsq

)] 1
2

(39)

Ro

cos θsqR
=

Ro

cos θsq

[
1 +

h cos2 θsq

R2
o

(
h − 2Ro sin θsq

cos θsq

)] 1
2

.

(40)
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Performing a binomial expansion on (39) and (40) up to the
second-order term and substituting the results into (37), we have

tb(θsq) ≈
2Ro

c cos θsq
+

h2 cos3 θsq

cRo
− h4 cos3 θsq

4cR3
o

(41)

tDMO(θsq) ≈
h2 cos3 θsq

cRo
− h4 cos3 θsq

4cR3
o

. (42)

The last term in (42) can be ignored if the baseline is small
compared to the bistatic range, 2h/Ro � 4. In a typical satel-
lite case with an Ro of 600 km and a baseline of 10 km, the
ratio 2h/Ro is 0.017, and the phase component of the higher
order term in (42) has the small value of

δφ = 2πfo
h4

4R3
oc

= 0.006π. (43)

Thus, the smile operator becomes

H(fτ , θsq) ≈ exp
{

j2π(fτ + fo)
h2 cos3 θsq

Roc

}
. (44)

It should also be noted that tDMO(θsq) in (42) is more accurate
for a bistatic SAR configuration as compared to the delay time
used in (28), as is evident from the discussion in the Appendix.
The time tDMO(θsq) in (28) is accurate when it is used to
transform a bistatic survey to a monostatic survey in seismic
image reconstruction. As the ratio of the baseline to bistatic
range becomes small, the signal travel times of (37) and (38)
converge.

VI. SIMULATIONS—PART 2 (LBF, DMO, AND MSR)

In this section, we simulate four cases to compare the accu-
racy of the point target focused using Rocca’s smile operator
(DMO), the LBF, and the point target spectrum using the MSR.

A. Simulation Parameters

Four cases of a point target are simulated using the airborne
tandem formation parameters given in Table II. The data are fo-
cused using the three different spectra. Both platforms operate
in stripmap mode, traveling with equal and constant velocity
along the same track (the stationary case).

B. Simulation Results

Again, rectangular weighting is used for both azimuth and
range processing. The ideal IRW is 1.06 samples in both range
and azimuth. The ideal PSLR is −13.3 dB, and the ideal ISLR
is −10.0 dB.
1) Case IV: Low Baseline-to-Range Ratio With θsqT =

−θsqR: For simulation Case IV, the ratio 2h/Ro is small
(0.05), and all the point target spectra give accurate processing.
The IRW in both range and azimuth differ from the theoretical
values by less than 1%. The PSLR and ISLR differ from the
theoretical values by less than 1 dB.
2) Case V: Moderate Baseline-to-Range Ratio With θsqT =

−θsqR: For simulation Case V, the ratio 2h/Ro is 0.124. The
spectrum obtained using Rocca’s smile operator suffers some

TABLE II
SIMULATION PARAMETERS FOR PART 2—TANDEM CONFIGURATION

phase degradation, leading to a loss of resolution and higher
sidelobes (see Fig. 7). The LBF and MSR spectra still provide
accurate processing.
3) Case VI: Large Baseline-to-Range Ratio With θsqT =

−θsqR: For simulation Case VI, the baseline is increased from
1 to 3 km to create a large baseline-to-range ratio 2h/Ro =
0.83. Fig. 8 shows that Rocca’s smile operator method is
not able to focus the point target with this large baseline. In
addition, Fig. 9 shows that the focusing limits of the LBF are
also reached at this baseline. Fig. 10 shows that the MSR is
still able to focus this symmetrical large baseline data correctly
by expanding η̃b in (4) up to the fourth-order azimuth fre-
quency term.
4) Case VII: Moderate Baseline-to-Range Ratio With

θsqT �= −θsqR: The bistatic configurations in Cases IV–VI
satisfy condition (24) because θsqT = −θsqR. In these symmet-
rical cases, the LBF is able to maintain accuracy up to large
baseline-to-bistatic-range ratios before starting to show phase
degradation. This is illustrated in Case VI, which has a very
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Fig. 7. Point target response focused using Rocca’s smile operator.

Fig. 8. Point target response focused using Rocca’s smile operator.

Fig. 9. Point target response focused using the LBF spectrum.

high baseline-to-bistatic-range ratio. Basically, the LBF breaks
down only at extreme baseline ratios when θsqT = −θsqR.

However, for simulation Case VII, the range vectors are no
longer symmetrical, and condition (24) is no longer valid. Even
with a shorter baseline and smaller baseline-to-bistatic-range
ratio of 0.27, the point target response in Fig. 11 is worse
than the symmetrical Case VI (compare with Fig. 9, where the
baseline ratio is 0.83).

Fig. 12 shows the impulse response of the point target
focused using Rocca’s smile operator. For this baseline ratio,
the preprocessing method using Rocca’s smile operator is not
able to focus the point target accurately.

Fig. 13 shows the results, with the MSR spectrum being
expanded up to the fourth azimuth frequency term. The accu-
racy is hardly affected by the change in bistatic configuration
(compare with Fig. 10).

C. Discussion

The results of this section show that care must be taken to
compute the spectrum of the bistatic signal accurately when the
signal acquisition geometry departs more and more from the
monostatic configuration. The results show that the MSR can
retain accuracy better than previous methods under “extreme”
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Fig. 10. Point target response focused using the MSR spectrum.

Fig. 11. Point target response focused using Rocca’s smile operator.

Fig. 12. Point target response focused using the LBF spectrum.

Fig. 13. Point target response focused using the MSR spectrum.
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bistatic configurations with fixed baseline. The MSR can be ac-
curate with nonfixed baselines, as demonstrated by an example
in [15].

VII. CONCLUSION

In this paper, it is shown that, under certain conditions, the
MSR, the LBF, and Rocca’s smile operator give equivalent
representations of the bistatic spectrum. In such cases, all three
methods give accurate focusing. Also, it is shown that, under
more general conditions, the MSR gives the most accurate rep-
resentation of the signal spectrum, as the bistatic configuration
departs more from the monostatic configuration.

By expanding about the two individual monostatic stationary
phase points, it is shown that the LBF is equivalent to a special
case of the MSR; the expansion is called the TSPP method.
The equivalence occurs when the MSR expansion of the phase
terms in the frequency domain is taken only up to the quadratic
phase term.

Such an expansion results in a quasi-monostatic term and
a bistatic deformation term. The TSPP approach can be con-
sidered to be an extension of the LBF because more ex-
pansion terms can be used. Bistatic configurations that differ
substantially from the monostatic equivalent would require the
inclusion of extra expansion terms in the bistatic deformation
component. Unfortunately, the use of more terms makes the
TSPP approach inefficient.

One way of determining the validity of the LBF is to examine
the magnitude of the third- and higher order terms of the TSPP.
If they are small, the LBF should provide accurate processing,
as the estimated stationary phase point is close to the actual
stationary point.

An alternate geometrical method of deriving Rocca’s smile
operator is shown for the tandem configuration. Using this
result, we were able to show a link between Rocca’s smile
operator (DMO) and the bistatic deformation term of the LBF
for the constant offset tandem configuration. It was also found
that the accuracy of the DMO method is dependent on the ratio
of baseline to bistatic range. A small baseline ratio is required
to achieve good accuracy.

To summarize, the point target spectrum of the MSR is the
most accurate analytical spectrum among the three spectra.
Sufficient terms in the series reversion expansion are required
to achieve the desired result. Therefore, if the bistatic degree is
high, rather than using the split phase methods such as Rocca’s
smile, the LBF, or the TSPP, it is recommended to use the
bistatic spectrum derived using the MSR.

APPENDIX

GEOMETRIC INTERPRETATION OF DMO

The DMO method, introduced in [7], transforms bistatic ac-
quisitions into monostatic ones for some bistatic configurations,
using a convolution operator known as Rocca’s smile. This
processing technique is a well-known method in the field of
seismic reconstruction [9].

Consider the bistatic survey shown in Fig. 14. It consists of
a source (transmitter) at point S that sends a seismic pulse, a
geophone (receiver) at point R, and a dipping or sloping layer

Fig. 14. Bistatic system geometry for computing the DMO operator.

represented by plane XY . The locus of constant delay is an
ellipse for this bistatic survey. Using the operator, the bistatic
survey can be transformed into a monostatic one, which has a
circular locus. Once this can be done, a seismic image can be
processed using efficient seismic algorithms [7], [19].

The total time required for the pulse to go from the trans-
mitter to the dipping layer back to the geophone receiver is
tb(θd), and the travel path is given by line SY plus line Y R.
For an equivalent monostatic case, the source and receiver are
located at the middle of the baseline; the time required is given
by tm(θd), with the travel path being given by line MX plus
line XM .

Using the geometry shown in Fig. 14, it can be shown that
the bistatic and monostatic time delays are related by

t2b(θd) = t2m(θd) +
4h2

c2
e

cos2 θd (45)

where ce is the speed of the pulse in the homogenous medium.
The bistatic signal has a longer time delay than the monosta-

tic signal, i.e., tb(θd) > tm(θd). The small difference in signal
arrival time or “negative delay” between tb(θd) and tm(θd) is
known as the DMO in seismic terminology

tDMO(θd) = tb

{
1 −

√
1 − 4h2 cos2 θd

t2bc
2
e

}
. (46)

Thus, by applying different negative delays as a function of
the dipping angle, the bistatic survey can be transformed to a
monostatic survey.

To transform the seismic representation to a bistatic SAR
model, the dipping layer is removed from the diagram and
replaced with a point target at position Y . The bistatic survey is
similar to the bistatic SAR system with a fixed baseline of 2h,
with a transmitter at point S, and a receiver at point R. While
the bistatic path is the same for both the seismic and radar cases,
the monostatic path is given by line MY plus line Y M . If the
baseline is short compared to the bistatic range, the lengths of
MY and MX will be almost the same. Thus, we can make the
approximation given in (26), with ce of (46) being replaced by
c and θd by the squint angle θsq of the equivalent monostatic
SAR system.
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