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Abstract

In anticipation of fully polarimetric SAR data from RADARSAT-2, we use a SIR-C data set to investigate
the potential of fully polarimetric spaceborne data for sea ice classification. This paper discusses an
entropy/anisotropy/α−angle (H/A/α) classification scheme followed by a minimum-distance classifier
based on the complex Wishart distribution of the coherency matrix. Fully polarimetric data acquired by
SIR-C over the Labrador Sea off Newfoundland's West Coast is analysed. Data from the two available
frequency bands, L- and C-band, are classified separately and the results are compared. Both
classifications provide sea ice – open water discrimination and sub-classification of various sea ice types.
The main differences between the two results are the number of sea ice classes derived (four for C-band,
three for L-band) and the fact that L-band data seems to provide a little better ice/water discrimination.
High correlation between the two results with respect to the main feature types (sea ice, water and land)
can be noted. Although ground truth is not available, the results are considered of good quality because
of the agreement between the L- and C- band results, and consistency with expert human interpretation.

Introduction

Information on the spatial extent of sea ice
coverage over time is important for both
economic and scientific reasons. Ocean traffic
routes and offshore operations at high latitudes are
affected by seasonally varying sea ice cover and
long term changes in the ice extent are an
indicator for climate change.

The importance of sea ice monitoring using
Synthetic Aperture Radar (SAR) increased once
spaceborne sensors started to provide data on an
operational basis. Major advantages are the
daylight and cloud coverage independence of the
radar as well as the operational coverage of large
areas due to satellite technology. Currently,
single polarisation sensors such as RADARSAT-1
are successfully in use (Haykin et. al., 1994).

The benefits of radar polarimetry for sea ice
classification have previously been demonstrated
(Eriksson et. al., 1998), but due to a lack of
continuously-available data, it is not used
operationally. The second generation of sensors
to be launched in the near future will provide
multi-polarimetric data. RADARSAT-2 will be
the first civilian satellite capable of providing
fully polarimetric data (Luscombe et. al., 2001).

Polarimetric data representations

Polarimetric data are a multiple channel
measurement thereby providing a more complete
inference with natural surface parameters than is
possible with a single channel radar system. The
coherency matrixT is a representation allowing
multilooking of the data on a matrix level and is
derived by vectorisation of the scattering matrix
kT (Cloude and Pottier, 1996).
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where the superscript+ indicates complex
conjugation. Srt is the complex scattering
amplitude for a given receive (r) or transmit (t)
polarisation; h stands for horizontal, v for vertical.
Scattering reciprocity is assumed.

Target decomposition

An eigenvalue decomposition of the coherency
matrix T allows the data to be interpreted in terms
of fundamental scattering mechanisms (Cloude
and Pottier, 1996). The eigenvalues ofT, denoted
by λi, can be seen as the relative strength of the
corresponding scattering mechanisms that are
represented by the associated eigenvectors. Three
parameters, entropy,α angle and anisotropy, are
used to characterise the result of the
decomposition.

The entropy H represents the randomness of the
scattering, H = 0 indicates a single scattering
mechanism (isotropic scattering) while H = 1
indicates a random mixture of scattering
mechanisms with equal probability and hence a
depolarising target:
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The angle α represents the average dominant
scattering mechanism and is calculated from the
eigenvectors ofT. The lower limit is given by
surface scattering in the geometrical optics limit
(α = 0°) followed by surface scattering under
physical optics and the Bragg surface model.
Dipole scattering (α = 45°) is followed by double
bounce scattering from metallic surfaces and
finally dihedral scatter from metallic surfaces (α =
90°), the upper bound. The individualαi are the
scattering mechanisms represented by the three
eigenvectors:

332211 αααα PPP ++=

The anisotropy A represents the relative powers of
the second and third scattering mechanisms. A =
0 indicates azimuthal symmetry while values of A
> 0 indicate increasing amounts of anisotropic
scattering:
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These three parameters allow automated
classification of the scene by partitioning the
H/A/α space. A set of standard thresholds is
suggested for this purpose. (Cloude and Pottier,
1997).

The complex Wishart classifier

Using the complex Wishart distribution of the
coherency matrix T, an appropriate distance
measure, d, can then be written according to
Bayes maximum likelihood classification as (Lee
et. al. 1999):

( ) ( )TVVVT 1
mmm

−+= Traced ln,

thus leading to a minimum distance classification
independent of the number of looks used to form
the multilooked coherency matrix�T�:

( ) ( ) mjdd ωω ≠≤ allfor,, jm VTVT

A pixel is assigned to a certain class,ωm, if the
distance, d, between pixel and class mean,Vm, is
minimum. The scheme is look-independent
which allows its application to multi-looked as
well as speckle filtered data. An iterative
application of the method is possible.

The classification depends upon a training set and
was initially developed for supervised
classification (Lee et. al. 1994). Using a training
set derived without supervision (via target
decomposition), makes this combined method a
powerful tool for scene classification. The
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Fig. 1: Combined unsupervised classification.

method as shown in Figure 1 utilises the full
polarimetric information and allows look-
independent classification. Interpretation of the
derived classes and assignment to the various
land, water and ice types is a required manual step
at the outset, but it may be possible to pre-define
the classes after analysis of more data.

SIR-C test data from the Labrador Sea

L- and C-band fully polarimetric data of an area
off the coast of Newfoundland were acquired by
the first SIR-C mission on April 18, 1994.
Figures 2 and 3 show the channel intensities for
the two frequencies. The landmass in the upper
right of the scene is part of the Gros Morne
National Park. Incidence angles range from 26°
to 31° (from left to right). Air temperature
records for Rocky Harbour (see Figure 8) indicate
an average daily temperature above zero degrees
for approximately four days prior to data
acquisition with the minimum temperature above
zero degrees for 24 hours prior to data acquisition.

A photograph taken from the Space Shuttle on
April 13 shows the ocean completely covered in
ice. However, high temperatures and wind caused
significantly different conditions on the
acquisition date, which is well into the melt
season for this region. Ice in various stages of
decline with surface melt and water saturation of
snow can therefore be expected. To reduce the
effect of speckle noise the data was multilooked
so that one pixel covers an area of about 100 m x
100 m (64 looks).

Channel intensities

The C-band channel intensities are shown in
Figure 2. The two co-polarised channels show a
high variation in backscatter return for open water

due to different levels of wind-induced surface
roughness. The VV channel is generally stronger
than the HH channel in areas of open water.
Smooth water shows the weakest return. The sea
ice is all first year ice (FYI). A well-defined large
floe on the top left of the image shows the
strongest return with bright linear structures
indicating the presence of ridges or deformed first
year ice. The sea ice in the lower half of the
image is more chaotic and appears to be seriously
affected by surface melt and/or saturated wet
snow cover, resulting in a lower backscatter. The
cross-polarised channel shows clear separability
between sea ice and water at steep incidence
angles. Wind features on water are not a factor in
this case; however, a differentiation between
different sea ice types is not apparent. This
channel has potential for ice edge detection in this
incidence angle range.

The corresponding L-band channel intensities are
given in Figure 4. Several differences can be
noted compared to the C-band data. First and
foremost, the co-polarised return from areas of
open water is not as severely affected by wind
induced surface roughness, which is explained by
the longer wavelength of the signal. The
backscatter coefficient is generally lower,
however, the texture of the sea ice correlates well
to the C-band data. L-band HH shows good
separability of sea ice and water as compared to
C-band HH. A higher return for open water in the
VV image reduces this capability for this channel.

The HV channel shows the ice edge very well but
seems to be more affected by surface melt and/or
saturated wet snow cover, which produces a weak
return. One big difference with respect to sea ice
can be observed in the Bonne Bay area (see
Figure 8), the inlet in the upper right part of the
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Fig. 2: C-band channel intensities

scene. The inlet appears to be covered by sea ice
as can be seen in all channels, except L-band HV.

While all C-band channels show typical sea ice
characteristics, the return in the L-band images is
extremely weak, which is not the case for the rest
of the ice areas in the scene. A similar effect can
be seen in the centre of the large floe on the top
left of the image. This might be explained by a
homogenous ice surface covered by a layer of
saturated snow that is rough for a C-band signal
but smooth for L-band.

Entropy, Anisotropy and αααα-angle

Figures 4 and 5 show the target decomposition
parameters for the two frequencies. The L-band
Entropy H looks very promising for ice/water
discrimination, with open water showing lower
entropy, whereas wind effects on open water
cause the C-band entropy to be ambiguous with
respect to ice/water separability.

VV [dB] -19 -4 HV [dB] -29 -14HH [dB] -19 -4

Fig. 3: L-band channel intensities

The scatterplots given in Figures 6 and 7 reveal
that L-band entropy covers a wider range of
values compared to C-band. The clear separation
of land water and sea ice for L-band entropy can
also be seen in the Entropy/Anisotropy scatterplot,
which shows three distinct clusters. While the C-
band Entropy/ Anisotropy scatterplot also shows
three distinct clusters related to ice, water and
land, the separation is mainly given by the
Anisotropy as can be seen in Figure 4. Theα
angle does contain information about the ground,
but type separability is not very good for this
parameter.

Dividing the Entropy/Anisotropy/α classification
space into 16 partitions as suggested in the
literature (Cloude and Pottier, 1997) does not
support the clusters just described. The standard
partitions are shown by dotted lines in Figures 6
and 7.
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Fig. 4: C-band Entropy, Anisotropy andα–angle

A standardised partitioning scheme has to be used
to allow unsupervised classification. With only
one data set available, we did not have enough
information to change the standard partitions
suggested in the literature. However,
improvements to the partitions seem possible,
based on the observed sea ice classification
results. For this data set, for example, the H/A
plane seems much more promising for
classification purposes than the H/α plane.

Classification results

C-band results of the combined classification for
sea ice were first presented by Scheuchl et. al.
(2001). The classification results after five
iterations of the complex Wishart classifier for C-
and L-band are shown in Figure 8. The two
frequencies resulted in different numbers of
classes, depending on the data distribution in the
Entropy/Anisotropy/α classification space. These
had to be assigned to main feature types of sea
ice, water and land.

H 0 1 A 0 1 αααα 0°°°° 90°°°°

Fig. 5: L-band Entropy, Anisotropy andα–angle

A comparison of these three groups for the two
frequencies is given in Table 1. The sum of the
off-diagonal elements (9.56 % of the total number
of pixels) represents the portion of pixels with
different classification in L- and C-band. It is
mainly sea ice and open water that are confused.
Figure 8 shows the results with emphasis on the
different sea ice types present. Several land sub-
classes (and open water sub-classes for C-band
data) were also detected but are not shown here.

A comparison of the different sea ice classes
between C- and L-band is difficult, as four classes
are derived in C-band vs. three classes in L-band.
However, there is some correlation between Sea
ice 1 (C-band) and Sea ice A (L-band) as well as
between Sea ice 3 (C-band) and Sea ice B (L-
band). This is most obvious on the large floe in
the top left of the images in Figure 8. These
classes represent ice with a rough surface, as the
backscatter is strongest (it is likely the oldest and
thickest ice in the image, however, no ground
truth is available to prove this assumption).
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Polarimetric parameters for the different classes
are given in Table 2 for C-band and Table 3 for L
band. Sea ice 3 and Sea ice B correlate nicely to
brighter areas in the channel intensity images
(Figures 2 and 3), thus indicating the presence of
ridges.

The lower section of the image is mostly
classified as sea ice (types 2 and 4 for C- band and
type C for L-band). Areas in this section that
were classified as water can best be seen Figure 8.
L-band seems to give better separation between
saturated snow and open water. Larger areas in
this section that are classified as water using L-
band data can also be seen in the C-band
classification and may well be meltwater ponds.

In general, both frequencies show classification
results that are fairly similar. A few more
differences should be noted though. Firstly, an
area of the large flow in the upper left of the
image is classified as water in C-band but not in
L-band. The size of the area is unusual as patches
of this size are usually classified the same in L-
and C-band as in the lower half of the image.

The inlet of Bonne Bay appears to be completely
frozen in the C-band classification but not so in
the L-band result. One possible explanation is the
very low return for this area for L-band thus
making the classification vulnerable to noise. On
the other hand a small area just left of the inlet is
classified as sea ice in L-band but not in C-band.
C-band classification generally seems to confuse
water and sea ice a bit more. This is also
indicated by more ice class pixels in open water.

The lack of ground truth does not allow the
comparison of sea ice classes to actual sea ice
types at this time. However, the spatial structure
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Fig. 7: L-band data distribution in the H/A/α
classification space

of the ice types, the correlation to backscatter
strength as well as agreement of the results with
expert human interpretation indicates that this
automated classification scheme works well.

The C- band polarimetric parameters for the class
means are summarised in Table 2. Land classes
show generally a stronger return as compared to
sea ice and water. Water shows high variability
depending on wind-induced surface roughness.
Three parameters, the cross-polarised channel
intensity HV, the Anisotropy A and the co-
polarised ratio HH/VV, can be identified as
providing the best separation of the main feature
types, sea ice, water and land. The cross-
polarised channel intensity is lowest for water and
highest for land. All three water classes show the
same average HV, probably as the low return is
close to the system noise level. This would
explain why wind-affected water surfaces do not
have any effect on this channel. The Anisotropy
A is highest for water and lowest for land. The
co-polarised ratio HH/VV is positive for land,
between 0 dB and –0.6 dB for sea ice and
approximately –1 dB for water. The other
parameters do not uniquely identify a certain
feature type.

The L- band polarimetric parameters for the class
means are summarised in Table 3. L-band shows
generally better separability of the main feature
types. The Entropy is certainly the single most
promising parameter as can be seen in Figures 5
and 7. The reduced sensitivity to wind-induced
water surface roughness is the main reason for the
improved capability to distinguish between sea ice
and water. The automated classification leads to
six land classes compared to four land classes for
the classification using C-band.



The availability of a more representative data set,
i.e. data available on an operational basis, would
certainly allow further reduction of required user
interaction as class means could be compared to
class libraries representing different land, ice and
water types.

Conclusions

Fully polarimetric SAR data show a strong
capability for unsupervised sea ice classification.
A combined Entropy/Anisotropy/α classification
followed by a complex Wishart classifier (five
iterations) was used. Class assignment to the
main types of sea ice, water and land is a required
manual step for the time being. Results from C-
band and L-band data are compared and the three
main class types show high correlation between
the two results. Sub-classes within the main types
were not compared as different numbers of sub-
classes were derived for the two frequencies.

Further algorithm improvement seems possible, as
the Entropy/Anisotropy plane is promising for a
separation of the land, sea ice and open water
classes, and a modified partitioning of the features
used in the primary classifier are expected to lead
to an improved result. A more representative data
set with ground truth available would be required
to investigate this option.
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Table 1: C-band and L-band classification results for the main class types. The "Confusion Matrix"
shows the percent of pixels assigned to one class in a given band, but another class in the other band.

C-band

Land Sea ice Water

(total) (13.45) (41.04) (45.51)

Land (11.99) 11.65 0.31 0.03

L-band Sea ice (44.77) 1.78 38.15 4.84

Water (43.24) 0.02 2.58 40.64

Table 2: Average C-band polarimetric parameters for the derived classes

Ice Type HH HV VV ρρρρhhvv ρρρρhvvv HH/VV HV/VV H A αααα
dB dB dB - - dB dB - - degrees

Sea ice 1 -8.9 -16.9 -8.7 0.65 0.25 -0.2 -8.2 0.68 0.54 29.0
Sea ice 2 -10.3 -17.1 -9.4 0.60 0.30 -0.5 -7.4 0.72 0.62 32.0
Sea ice 3 -7.4 -16.2 -7.3 0.69 0.19 0.0 -8.9 0.65 0.44 26.9
Sea ice 4 -11.6 -17.3 -11.0 0.50 0.36 -0.6 -6.3 0.77 0.67 37.9

Water 1 -12.7 -17.9 -11.5 0.50 0.40 -1.2 -16.4 0.74 0.77 38.8
Water 2 -10.7 -17.9 -9.7 0.68 0.32 -0.9 -8.2 0.64 0.74 28.4
Water 3 -8.5 -17.9 -7.5 0.79 0.25 -0.9 -10.4 0.51 0.69 21.7

Land 1 -0.5 -8.8 -1.4 0.67 0.05 0.9 -7.4 0.72 0.07 27.6
Land 2 -4.8 -11.3 -5.6 0.52 0.09 0.8 -5.7 0.85 0.15 36.6
Land 3 -6.7 -12.6 -7.5 0.45 0.14 0.8 -5.1 0.88 0.21 40.4
Land 4 -8.7 -14.0 -9.3 0.38 0.20 0.6 -4.6 0.91 0.31 44.0

Table 3: Average L-band polarimetric parameters for the derived classes

Ice Type HH HV VV ρρρρhhvv ρρρρhvvv HH/VV HV/VV H A αααα
dB dB dB - - dB dB - - degrees

Sea ice A -12.2 -24.0 -11.6 0.83 0.07 -0.6 -12.4 0.45 0.17 14.4
Sea ice B -10.4 -21.6 -10.1 0.80 0.06 -0.3 -11.5 0.50 0.16 15.7
Sea ice C -13.9 -27.2 -12.8 0.88 0.08 -1.1 -14.4 0.35 0.20 12.2

Water -14.0 -32.0 -12.0 0.95 0.17 -2.0 -20.0 0.16 0.37 10.2

Land A -10.9 -17.3 -10.8 0.51 0.03 -0.1 -6.5 0.85 0.04 35.1
Land B -8.9 -14.8 -9.3 0.44 0.02 0.3 -5.5 0.89 0.03 39.9
Land C -7.2 -13.2 -7.8 0.44 0.02 0.6 -5.4 0.89 0.03 40.8
Land D -1.0 -9.3 -0.9 0.70 0.05 -0.1 -8.4 0.68 0.02 24.5
Land E -5.2 -11.8 -5.5 0.52 0.03 0.3 -6.3 0.85 0.03 35.9
Land F -7.6 -17.5 -7.4 0.78 0.05 -0.3 -10.1 0.56 0.05 18.3


