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Focusing Bistatic SAR Data Using the
Nonlinear Chirp Scaling Algorithm

Frank H. Wong, Ian G. Cumming, Life Senior Member, IEEE, and Yew Lam Neo, Member, IEEE

Abstract—Bistatic synthetic aperture radar data are more chal-
lenging to process than the common monostatic counterparts
because the flight geometry is more complicated and the data
are usually nonstationary. Whereas time-domain algorithms can
handle general bistatic cases, they are very inefficient; therefore,
frequency-domain methods are preferred. Several frequency-
domain monostatic algorithms have been modified to handle a
limited number of bistatic cases, but a general algorithm is sought,
which can handle cases such as nonequal platform velocities,
nonparallel flight tracks, and high squints. In this paper, we
modify the nonlinear chirp scaling (NLCS) algorithm to handle
a general case of bistatic data. The key is to use a linear range
cell migration correction to reduce the range-azimuth coupling,
an NLCS to precondition the data for azimuth compression, and
a series expansion to obtain an accurate form of the signal spec-
trum. The azimuth nonstationarity is handled through the use
of invariance regions. Simulations have shown that the modified
NLCS algorithm can handle data with more complicated bistatic
geometries than the previous algorithms.

Index Terms—Bistatic SAR, chirp scaling, perturbation func-
tion, point target response, range cell migration (RCM) correction
(RCMC), secondary range compression (SRC), synthetic aperture
radar (SAR).

I. INTRODUCTION

MONOSTATIC synthetic aperture radar (SAR) data com-
pensated to a straight line path are azimuth invariant

because point targets with the same range of closest approach
have the same azimuth phase history. As a result, efficiency
can be gained by processing the data in the azimuth frequency
domain (FD). Bistatic data, however, are often azimuth variant
because both the transmitter and the receiver can assume dif-
ferent motion trajectories. An additional complication is that
the range history of a bistatic target is the sum of two hyper-
bolic range equations, giving a double square-root term in the
range equation (called a flat-top hyperbola) [1]. Therefore, the
analytical simplicity of the single square root of the monostatic
case is no longer available. As a result of these two properties,
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monostatic SAR processing algorithms must be modified if they
are used to handle bistatic data.

Modified ω–k algorithms were introduced in [2] and [3].
These algorithms work in the 2-D FD and make use of numer-
ical methods to calculate the double square-root phase term.
Zhang et al. [4] proposed a wavenumber domain approach
based on the concept of an instantaneous Doppler wavenumber
to process bistatic SAR data with parallel tracks. Bamler and
Boerner [5] and Bamler et al. [6] proposed a focusing algorithm
that replaces the analytical SAR transfer functions with numer-
ical equivalents. Their algorithm is able to handle the azimuth-
invariant case, including squint. In a separate approach, a
preprocessing technique derived from the “Dip Move Out” in
the seismic literature [7] is used to transform the bistatic data
to a monostatic equivalent [1]. The data can subsequently be
focused with any monostatic algorithm. In [8], Monti Guarneiri
and Rocca made an extension to [7], in which they reduced
a general bistatic configuration to a monostatic configuration.
However, such a reduction to monostatic configuration may not
be applicable for more extreme bistatic cases. Loffeld et al.
[9] derived an approximate bistatic point target spectrum, and
several algorithms were developed based on this approach [10],
[11]. Natroshvili et al. [12] applied this point target result to
focus the azimuth-variant case. The bistatic geometries that
can be focused are limited by the accuracy of the point target
spectra. Rodríguez-Cassolá et al. [13] made use of the results
from [9] to modify the range Doppler algorithm [14] and the
chirp scaling algorithm [15] to handle bistatic cases. Most of
these modified algorithms are only able to handle azimuth-
invariant and mildly bistatic cases.

The original nonlinear chirp scaling (NLCS) algorithm has
been shown to be an alternative way to focus monostatic data
and has been demonstrated to work on the bistatic configura-
tion, where the transmitter has zero squint and the receiver is
stationary [16]. Qiu et al. applied the NLCS algorithm to the
case where one of the transmitters or receivers is stationary
[17]. This paper further develops the NLCS algorithm to handle
bistatic geometries, where the platforms have unequal velocities
and their flight paths are not parallel. Recently, an accurate
2-D point target spectrum has been derived by basing on the
reversion of a power series for the general bistatic case [18].
It is known as the method of series reversion (MSR). By
making use of this point target spectrum result, the NLCS
algorithm can be made to handle more general bistatic cases.
The algorithm is able to process higher squint and longer wave-
length cases than other algorithms. Previously, only inefficient
time-domain algorithms, such as back projection [19], have
been able to handle general bistatic cases. This paper shows
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Fig. 1. Aircraft positions and beam geometry at the time when the center of
the composite beam crosses the reference target.

how the efficiency of the FD can be obtained with the NLCS
algorithm.

This paper begins by introducing a signal model that is
suitable for developing the bistatic SAR processing algorithms.
Section III explains the principles and limitations of the original
NLCS algorithm. Section III-A presents the modified NLCS al-
gorithm without secondary range compression (SRC). The ex-
planation of how SRC can be added to the algorithm to handle
wide-aperture cases is left to Appendix A, because it is not im-
portant to the understanding of the NLCS algorithm and in the
development of the processing equations. Section IV presents
the simulation results of a bistatic case, where the platforms
have unequal velocities and the flight paths are not parallel.

The focusing limits of the algorithm can be determined by
ensuring that the uncompensated range cell migration (RCM)
and the final phase errors fall within specified limits. This will
ensure that the impulse response has acceptable broadening in
resolution and the sidelobe ratios are small enough. The thesis
of Neo [20] gives a detailed analysis of how the invariance
region can be determined, and a summary is presented in
Appendix C.

II. BISTATIC SIGNAL MODEL

We consider the general bistatic imaging geometry shown in
Fig. 1. Both the transmitter and the receiver are assumed to be
flying on straight but nonparallel paths with a constant velocity.
The transmitter has a velocity of VT , and the receiver has a dif-
ferent velocity VR. We use the right-hand Cartesian coordinate
system, where the x–y plane is locally tangent to the surface of

the Earth. The targets are assumed to lie on this plane, and the
velocity vector of the transmitter is parallel to the y-axis.

In bistatic operation, one or both of the antennas are steered
to obtain an overlapping beam on the ground, and the expo-
sure of a target is governed by this composite beam pattern.
The instantaneous range from the transmitter to an arbitrary
reference point target is RT (η), and the corresponding range
from the receiver is RR(η). The range time is given by τ , and
the azimuth time η is chosen to be zero at the composite beam
center crossing time (midexposure time) of the reference target.
The squint angles θsqT and θsqR shown in Fig. 1 are measured
at the composite beam center crossing time of the target.

Assuming that a wide bandwidth encoded signal p(τ) is
upconverted by the transmitter to the carrier frequency fo; the
transmitted signal can be expressed as

st(τ) = Re {p(τ) exp(j2πfoτ)} . (1)

The echo received from a point target experiences a delay that
is proportional to the two-way slant range R(η)

sr(τ, η) = waz(η)st

(
τ − R(η)

c

)
(2)

where the azimuth envelope waz(η) is given by the composite
antenna pattern, and c is the speed of light. The constant ampli-
tude terms in the signal have been omitted. The instantaneous
two-way range R(η) of the target is given by (3) at the bottom
of the page. where ηbcc is the beam center crossing time, RT cen

is the range of the transmitter to the point target, and RRcen

is the corresponding range of the receiver, both at ηbcc of the
target.

After downconversion, the demodulated signal becomes

s(τ, η) = waz(η)p
(

τ − R(η)
c

)
exp

{
−j2π

R(η)
λ

}
(4)

where λ is the radar wavelength.
One way to treat the double hyperbolic range in (3) is to

expand it in a power series in time

R(η) = Rcen + k1(η − ηbcc) + k2(η − ηbcc)2

+ k3(η − ηbcc)3 + k4(η − ηbcc)4 + · · · (5)

where Rcen = RT cen + RRcen denotes a two-way range at the
beam center crossing time. For an arbitrary target, the RCM
slope k1 can be expressed as

k1 = VT sin(θsqT ) + VR sin(θsqR) (6)

R(η) =RT (η) + RR(η)

=
√

V 2
T (η − ηbcc)2 + R2

T cen − 2VT (η − ηbcc)RT cen sin(θsqT )

+
√

V 2
R(η − ηbcc)2 + R2

Rcen − 2VR(η − ηbcc)RRcen sin(θsqR) (3)
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Fig. 2. Functional block diagram of the extended NLCS algorithm (without
SRC). The seven thick-lined boxes pertain to the original NLCS algorithm.

and the second derivative coefficient [that governs the azimuth
frequency modulation (FM) rate] can be expressed as

k2 =
1
2

[
V 2

T cos2(θsqT )
RT cen

+
V 2

R cos2(θsqR)
RRcen

]
. (7)

The temporal coefficients k1, k2, . . ., are weakly dependent
on the range and azimuth of the target (the expressions for
the other k coefficients are given in [18]). The k1 coefficient
is used for the linear phase removal in Section III-C, the k2

coefficient is used for the derivation of the perturbation function
in Section III-D, and the higher order coefficients are used
in defining the azimuth-matched filter in Section III-F, using
the MSR.

III. EXTENDED NLCS ALGORITHM

The original NLCS algorithm [16] was used to focus the
following: 1) monostatic data and 2) bistatic data, where the
transmitter is illuminating on broadside and the receiver is
stationary. It applied to short-wavelength systems, where the
quadratic RCM (QRCM) could be ignored.

The main steps in the original NLCS are shown in the thick-
lined boxes in Fig. 2. The first three steps implement range
compression and linear RCM correction (LRCMC). One result
of LRCMC is that the targets with different azimuth FM rates
are moved into the same range gate. In order to allow azimuth
compression in the FD, NLCS is applied in the time domain
to equalize the FM rates along each range cell. This is done
by multiplying the signal by a “perturbation function” that has
the form of a complex exponential.1 Once the azimuth FM rate

1The term “perturbation” is used because its effect is to alter or perturb the
frequency of the signal by a varying amount as the azimuth time progresses. The
current form of chirp scaling is called “nonlinear,” as the scaling function has
a cubic phase term. The original chirp scaling algorithm [15] uses a quadratic
phase term, i.e., linear in frequency.

is equalized along each range gate, conventional FD azimuth
compression can be applied to focus the data. There is some
analogy with the method that Moreira et al. used to equalize
the FM rates in monostatic SAR processing to allow the use of
the spectral analysis algorithm for azimuth compression [21].

A. Algorithm Description

In [22] and [23], we introduced an extension of the NLCS
to focus the bistatic configuration, where the platforms were
assumed to have parallel tracks and equal velocities. In [24],
we extended the method to nonparallel tracks and nonequal
velocities. This paper is an extension of [24], in that it gives
a detailed derivation of the processing equations. It also gives a
more accurate form of the RCM, using MSR, and it shows how
SRC can be incorporated into the NLCS algorithm.

As a key step, we use the MSR to derive the 2-D point
target spectrum. By using the analytical form obtained by the
MSR, the azimuth-matched filter can be derived in the FD,
which allows the efficiency of fast convolution in the azimuth
compression operation to be obtained. The resulting accuracy of
the spectrum is limited only by the number of terms used in the
expansion of (5). When longer apertures and/or higher squints
need to be processed, more terms can be kept in the expansion.

Fig. 2 shows the main steps of the extended NLCS algorithm,
when SRC is not needed. A discussion of how SRC can be
incorporated is given in Appendix A.

Range compression and LRCMC (boxes 1 to 3) are done
in the range FD. A (box 4) linear phase is applied along the
azimuth time variable in the range time domain to remove the
Doppler offset that comes from squinted operation. The targets
that have been moved to the same range gate now have different
FM rates. A (box 5) perturbation function is applied in the
azimuth time domain to equalize the FM rates along each range
gate. Residual RCMC (box 7) is performed in the range Doppler
domain, using a range direction interpolation. This step was
ignored in the original NLCS, which concentrated on short-
wavelength cases. Accuracy is improved by incorporating this
step. Finally, (boxes 8 and 9) azimuth compression is carried
out by using an FD matched filter, using invariance regions as
needed.

In the subsequent sections, each major stage of the extended
NLCS algorithm is analyzed and discussed. An image registra-
tion step is usually applied at the end (e.g., to undo LRCMC and
register the image to a map datum), but it will not be discussed
further.

B. Linear RCM Correction

The trajectory of the point target contains both linear and
nonlinear RCM components in general. The linear component
[(6)] arises when the composite antenna beam is squinted.
Most of the range Doppler coupling tends to come from the
linear component, particularly for short-wavelength systems.
This component can be removed with LRCMC, which reduces
the need for SRC. Furthermore, LRCMC aligns the trajectories
with the azimuth axis to facilitate azimuth compression.
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Fig. 3. Illustration of linear RCMC in the NLCS algorithm. (a) Bistatic SAR imaging geometry. (b) Data before LRCMC. (c) After LRCMC.

In practice, the LRCM slope varies with range because squint
angles vary with the target range. In the azimuth-variant bistatic
case, the slope varies with the azimuth as well. A practical
way to deal with this problem is to perform LRCMC within
an invariance region to keep the variations of squint angles
small. The amount of (two-way) range shift is computed from
a reference point, for example, η = 0, as

δr(η) = k1η = [VT sin(θsqT ) + VR sin(θsqR)] η. (8)

The LRCMC interpolation is usually combined with the range
compression in the range FD, using a phase ramp.

To illustrate the LRCMC processing of the NLCS algorithm,
consider a simple bistatic flight geometry, such as the one
shown in Fig. 3(a), with four point targets. Target B has the
same minimum slant range as target C and the same beam cen-
ter crossing time as target A, as shown in Fig. 3(b). Targets A,
C, and D have a similar LRCM slope (at an angle given by
the composite squint angle) and lie in the same range cell after
LRCMC, as shown in Fig. 3(c). For processing purposes, target
A is chosen as the reference point (nominally at midswath), and
the beam center crossing time of this target is set to zero for
convenience. Letting ηC = ηbcc for target C, we can write

RcenC = RcenA + kA1ηC = RcenA + ∆RL (9)

where the R terms are interpreted as the two-way slant range
of the respective targets at the composite beam center crossing
time. After LRCMC, targets A, C, and D lie in the same range
cell, as shown in Fig. 3(c).

In practice, the targets after LRCMC have some higher
order residual RCMs, which may or may not be significant.
For example, the instantaneous slant range of target A after
LRCMC is given by

RlrcmA(η)=RcenA+ kA2η
2+ kA3η

3+ kA4η
4+ · · · (10)

where the subscripts of the k terms indicate that they are the
coefficients ki in (5) for target A.

C. Linear Phase Removal

Although LRCMC removes the linear translation component
of the target’s trajectory, it does not remove the Doppler shift
that is also caused by the squint. The Doppler shift is a linear
phase term in azimuth time, which should be removed to
facilitate the application of the MSR [25]. The removal of the
linear phase term can be done in the azimuth time domain by
multiplication with the phase function

slrcm(η)= exp
{

j
2π

λ
kA1η

}

= exp
{

j
2π

λ
(VT sin(θsqT )+VR sin(θsqR)) η

}
(11)

where the squint angles (and the velocities in the satellite case)
are mildly range dependent.

The signal from the reference target A after LRCMC and
linear phase removal is given by

sA(τ, η)≈ρr

{
τ−RlrcmA(η)

c

}
waz(η) exp

{
−j2π

RlrcmA(η)
λ

}
(12)

where ρr(·) is the sinc-like range-compressed pulse envelope.
In similar, the signal for target C after LRCMC and linear phase
removal is given by

sC(τ, η) ≈ ρr

{
τ − RlrcmC(η)

c

}
waz(η − ηC)

× exp
{
−j2π

RlrcmC(η)
λ

}
(13)

where

RlrcmC(η) = RcenA + kC2(η − ηC)2

+ kC3(η − ηC)3 + kC4(η − ηC)4 + · · · . (14)

These equations express the different FM rates of targets A
and C, as kC2 �= kA2. This information is used in the next
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Fig. 4. Illustration of the effects of perturbation in parallel case.

section to derive the perturbation function that equalizes the
azimuth FM rates of these targets.

D. FM Rate Equalization Using NLCS

The azimuth signal in a given range cell now consists of
a group of point targets that originated from different ranges
and, consequently, have different azimuth FM rates. Therefore,
it would not be accurate to compress the whole azimuth array
using a single FD matched filter. To tackle this problem, the
NLCS algorithm equalizes the dominant quadratic phase term
of each target, using a perturbation function [16]. Because the
higher order phase terms do not change as rapidly with range
and azimuth as the quadratic term does, they can be assumed to
be constant in the processed region for the purposes of azimuth
compression. This process can be viewed as a type of pre-
processing, because it effectively makes the dominant second-
order phase component azimuth invariant before applying the
azimuth compression filter.

Fig. 4 shows the principle of equalizing the FM rate using the
perturbation function. In order to simplify the illustration, the
Doppler offset due to squint is not shown. Only the quadratic
part of the phase is shown, which is sufficient to derive the
perturbation function. Later, when we derive the azimuth-
matched filter in Section III-F, the higher order terms in the
range equation will be used, as they are needed for accuracy at
that stage.

We consider targets A, C, and D, which lie in the same range
cell after LRCMC, as shown in Fig. 3. Fig. 4(a) shows the
real part of the azimuth FM signal of the three point targets,
and Fig. 4(b) shows the corresponding phase of each azimuth

signal. The three phase curves have different FM rates (second
derivatives) because this parameter varies with the original
range position of the target.

The perturbation function is given a cubic form to equalize
the FM rates of the targets. An appropriate cubic function is
shown in Fig. 4(c). This cubic phase is added to the phase in
(b) along azimuth time to obtain the three target phases shown
in Fig. 4(d). We can see how the phase of each target has
been altered by the perturbation to achieve the same FM rate.
However, a phase offset has been introduced for each target,
which can be removed later. Finally, Fig. 4(e) shows the real
part of the perturbed signal of the three point targets, where a
small Doppler shift can be seen.

To determine the cubic phase term of the perturbation func-
tion, the phases of targets A and C after perturbation are written
down. Subsequently, the cubic coefficient of the perturbation
function is selected in such a way that the FM rates of targets A
and C become equalized.

The azimuth signal for reference target A, after introducing
the cubic perturbation function exp{jπαη3}, is given by

sApert(τ, η) = sA(τ, η) exp{jπαη3} (15)

where the parameter α is the coefficient of the cubic pertur-
bation function. Its expression is derived in Appendix B and
given by

α =
1
3

[
V 2

T cos2(θsqT )
λRT cenARcenA

+
V 2

R cos2(θsqR)
λRRcenARcenA

]

× (VT sin(θsqT ) + VR sin(θsqR)) . (16)
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The resulting perturbed signal is also derived in Appendix B,
and it is given by

s′Cpert(τ, η1)

≈ ρr

(
τ − RcenA

c

)
waz(η1)

× exp
{
jπαη3

1

}
exp

{
jπα3η2

Cη1

}
exp

{
jπαη3

C

}
× exp

{
−j

π

λ

(
V 2

T cos2(θsqT )
RT cenA

+
V 2

R cos2(θsqR)
RRcenA

)
η2
1

}
(17)

so that the phase modulation is now independent of target
position.

The four exponential terms in (17) can be interpreted as
follows.

1) The first term is a cubic phase modulation, which is the
same for all targets. This cubic phase is caused by the
perturbation process.

2) The second phase term is a small Doppler shift. For
example, the Doppler shift for target C is as follows:

fshift =
1
2π

[
d

(
3παη2

Cη1

)
dη1

]
=

3α η2
C

2
. (18)

The amount of spectrum shift is proportional to the
square of ηC (the azimuth time offset from η = 0). The
point targets that are furthest away from the reference
experience the most spectrum shift. All point targets are
shifted in the same direction, as can be seen in Fig. 4(e).
This Doppler shift generally does not present a problem
because the azimuth signal is usually oversampled by
20%. As long as the shift in the spectrum band stays
within this constraint, no aliasing of the spectrum will
occur (refer to a numerical example in Section IV-A,
where the shift is only 6% of the azimuth bandwidth).

3) The third phase term is a constant, which depends on
the position of the target. This constant phase term has
no effect on the focusing process. It can be ignored if a
magnitude image is the final product. This term raises or
lowers the point target phase, as shown in Fig. 4(d).

4) The fourth exponential term is the linear FM modulation,
which is now the same for all targets. This is the sought-
after result of the perturbation operation.

To summarize, the final azimuth phase modulation is con-
tained in the first and fourth exponential terms in (17), and this
modulation is the same for all targets in the same range gate.

As a simple check on the perturbation coefficient, the pa-
rameters are set for the limiting case of a monostatic geom-
etry. The velocity is set to Vr = VT = VR, the squint angle
is set to θsq = θsqT = θsqR, and the one-way range becomes
Rs = RcenA/2 = RcenT = RcenR. Substituting these values
into (16), the perturbation coefficient becomes

αm =
2
3

(
V 3

r cos2(θsq) sin(θsq)
λR2

s

)
(19)

which is the same as the perturbation coefficient derived in [16]
for the monostatic configuration.

E. Residual RCMC

After LRCMC, the RCM includes quadratic and higher order
terms, although the higher order terms are usually very small
compared to the quadratic term. Uncorrected range curvature
leads to impulse response degradation in both the range and
azimuth directions. The residual RCM is usually kept at less
than half a range resolution cell, so that range broadening is
negligible.

Residual RCMC is carried out by using a range direction
interpolator in the range Doppler domain. Applying an azimuth
Fourier transform (FT) to the signal in (12), the range Doppler
signal of target A can be written as

SA(τ, fη) = ρr

(
τ − 1

c
(RcenA + Rcurv(fη))

)
× waz(fη) exp {−jφazA(fη)} (20)

where Rcurv(fη) describes the range curvature of the point
target in the range Doppler domain, and φazA(.) is the azimuth
phase modulation. An expression for the azimuth phase term
φazA(.) is derived in Section III-F.

Using the analytical MSR spectrum result in [18], the range
curvature Rcurv(fη) can be derived with relative ease [25]

Rcurv(fη)=
λ2

4k2
f2

η +λ3

[
k3

4k3
2

]
f3

η +3λ4

[
9k2

3−4k2k4

64k5
2

]
f4

η +· · · .
(21)

The range curvature does not have a strong dependence
on range. As an example, consider a 1-m resolution L-band
system with a transmitter range of 13.4 km and a receiver range
of 13.9 km. The transmitter/receiver separation or baseline is
5 km, θsqT = 30◦, θsqR = 45.3◦, and the range swath width
is 5 km. It is found that the residual RCM is quite large at
ten range resolution cells. However, the residual RCM change
between the midswath and edge targets (measured at the end of
the azimuth aperture) is only 10% of a resolution cell. Thus, the
residual RCM of targets A and C coincides quite closely in the
range Doppler domain; thus, it can be removed with the same
RCMC shift.

Trajectories become parallel to the azimuth frequency axis
after the residual RCMC operation. For efficient implemen-
tation of the NLCS algorithm, range curvature correction is
normally done after the FM rate equalization stage. This is
because FM rate equalization is performed in the azimuth time
domain, whereas residual RCMC and azimuth compression are
both done in the range Doppler domain.

F. Azimuth Compression

The derivation of the coefficient α has ignored all phase
terms in the signal higher than the quadratic, as shown in (32) in
Appendix B. As explained in the appendix, the perturbed signal
shows that only the linear FM rate of all targets is equalized
by the NLCS. Whereas the terms higher than the quadratic are
not equalized over azimuth, these terms should be taken into
account in the azimuth-matched filter, which are set for the
reference target A. For other targets, there is a residual phase
error after azimuth compression due to the difference between

Authorized licensed use limited to: Ian Cumming. Downloaded on October 7, 2008 at 15:34 from IEEE Xplore.  Restrictions apply.



WONG et al.: FOCUSING BISTATIC SAR DATA 2499

these higher order phase terms and those of target A. Usually,
these cubic and higher order phase errors are not significant
compared to the others discussed in Appendix C.

The higher order terms for target A can be incorporated in the
azimuth FD matched filter by performing an FT on (15), using
(12), while keeping the terms up to the fourth order in (10), as

SazA(τ, fη) ≈
∫

ρr

(
τ−RcenA

c

)
waz(η) exp{−j2πfηη}

exp
{
−j

2π

λ
(kA2η

2+kA3η
3+kA4η

4)+jπαη3

}
dη. (22)

Note that the constant phase term exp{−j(2π/λ)RcenA} has
been ignored here and in subsequent equations. Continuing
with the formulation, using the point target spectrum result
from MSR and the principle of stationary phase [25], the
azimuth frequency fη and the azimuth time η are now related by

fη(η) = −1
λ

(2kA2η + 3kA3η
2 + 4kA4η

3) +
3
2
αη2 (23)

η(fη) = A1fη + A2f
2
η + A3f

3
η + · · · (24)

where

a1 = −2
λ

kA2 a2 =
(

3
2
α− 3

λ
kA3

)
a3 = −4

λ
kA4

A1 =
1
a1

A2 = −a2

a3
1

A3 =
2a2

2−a1a3

a5
1

. (25)

The FD matched filter is the conjugate of SazA, and it is
given by

hamf(fη) = exp {−jφamf (η(fη))} (26)

where

φamf(fη) = −2π

λ
(kA2η

2+ kA3η
3+ kA4η

4)+ παη3− 2πfηη

(27)

and all η’s on the right-hand side are functions of fη, as given
in (24).

The matched filter in the azimuth FD can now be computed
numerically for each range cell (the k’s depend on range). For
each value of fη, the time at the stationary point of the integrand
in (22) is found in (24) and substituted into (27).
Misregistration: The azimuth-matched filter is evaluated by

using the reference point target signal given in (32). It focuses
all the point targets in the azimuth array to their respective sta-
tionary points. Ideally, target C should be registered to η1 = 0.
As can be seen in Fig. 4(d) and (e), the edge targets (targets C
and D) will be misregistered to the right.

To find the misregistration, the position of the stationary
point can be solved by setting the differential of phase (28) to
zero and finding its roots. Using target C as an example again

dφazC

dη1
(τ, η1) = −2π

λ

(
V 2

T cos2(θsqT )
RT cenA

+
V 2

R cos2(θsqR)
RRcenA

)
η1

+ 3πα
(
η2
1 + η2

C

)
= 0. (28)

Fig. 5. Impulse response using an azimuth-matched filter with second-order
phase.

Fig. 6. Impulse response improvement when the cubic phase term is added to
the azimuth-matched filter.

The amount of misregistration varies in a parabolic fashion with
the azimuth. The misregistration is usually small, and it can
be ignored in most cases. It can also be removed during the
image registration stage. In practice, it is sufficient to use a few
points to fit a second-degree polynomial to this misregistration
equation and interpolate the image for correct registration.
Discussion: The importance of adding the cubic phase term

to the matched filter can be illustrated with a simple C-band
monostatic case with a range and azimuth resolution of 1 m
and a squint angle of 30◦. The slant range is 14 km. The ideal
impulse response width is 2.65 cells in range and 1.25 cells in
azimuth. Rectangular weighting has been used in the process-
ing, and the ideal peak sidelobe ratio (PSLR) and integrated
sidelobe ratio (ISLR) are −13.3 and −10.0 dB, respectively.

Using only the quadratic term [the last exponential term
in (17)] in the azimuth-matched filter, the azimuth impulse
response is poor, as shown in Fig. 5. The azimuth broadening
is more than 100%, and the ISLR is bad. With the inclusion of
the cubic phase term in (22), the impulse response is improved
significantly, as shown in Fig. 6.

IV. SIMULATION EXAMPLE

To verify the ability of the NLCS to focus the data collected
on nonparallel tracks with unequal velocities, a simulation
using airborne SAR parameters given in Table I is performed.
An appreciable amount of squint is assumed for both the
transmitter and receiver antennas, but not enough to require
SRC. A residual QRCM of 1.9 range resolution cells is present;
therefore, residual RCMC is necessary.

The simulation uses an array of 25 targets, which are laid
out on a 1.6-km2 grid in ground range/azimuth, as shown
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TABLE I
SIMULATION PARAMETERS FOR A SLIGHTLY

NONPARALLEL FLIGHT GEOMETRY

in Fig. 7. This point target layout corresponds to the range
invariance region that limits the resolution broadening to 3%,
as determined by the analysis in Appendix C (some applica-
tions may be able to allow more broadening). A rectangular
window is used in both the range and azimuth processing, i.e.,
no weighting is used. The oversampling ratio is 2.0 in range
and 2.66 in azimuth; thus, the theoretical range resolution is
1.35 m (1.76 range cells), and the azimuth resolution is
1.6 m (2.36 azimuth cells), which are based on the definitions
of resolution given in [26] and [27].

A. Simulation Results

The simulated data were processed by using the extended
NLCS algorithm in Section III-A, and the resulting image is
shown in Fig. 8. The reference point target is well focused and
has negligible broadening in both range and azimuth. Its ISLR
and PSLR values are within 0.05 dB of the theoretical values.
The other targets are well focused in range—the range PSLR
deviates from the theoretical value of −13.3 dB by less than
0.1 dB, and the range ISLR is within 0.1 dB from the expected
value of −10.0 dB.

Targets 5 and 21 are the furthest from the scene center and
therefore suffer the largest azimuth phase degradation. The
impulse response of these two point targets are shown in Figs. 9
and 10, respectively. For these edge targets, there is negligible
broadening in range, whereas azimuth broadening is less than
2.5%. The ISLR degradation is less than 1.5 dB, and the PSLR
has a degradation of less than 2 dB from the theoretical value.
The shift in the azimuth spectrum is 17.2 Hz, which is about
6% of the bandwidth, and hence, no aliasing occurs.

The size of the invariance region is determined by analyzing
the allowable residual RCM and phase error and their impact
on the impulse response, as in Appendix C. It has been found
that the invariance region has been limited to a ground range of

1.6 and 1.84 km in the azimuth direction for this example, using
3% as a resolution broadening criterion.

B. Discussion

In a subsequent operation, the image is geometrically recti-
fied to the ground plane, using interpolators. The result is shown
in Fig. 11, where the registered targets are seen to lie on a square
grid. The misregistration [(28)] caused by the chirp scaling was
up to 7 m—this was corrected during the registration operation.

The theory and simulation in this paper have not considered
the phase preservation of the processing algorithm. Various
operations, such as the linear phase removal and the NLCS,
affect the image phase. If necessary, the correct phase can be
reinstated at the end of the processing, as was done in the
original chirp scaling paper [15].

V. SUMMARY

The NLCS algorithm discussed in this paper is an extension
of the original NLCS algorithm. The algorithm is extended to
focus the bistatic configurations, where the platforms assume
nonparallel motion with unequal velocities. The formulation
of the NLCS algorithm is aided by the analytical spectrum
obtained by using the MSR. The more accurate spectrum so
obtained allows the extended NLCS algorithm to handle longer
wavelength and higher squint cases.

The processing efficiency of NLCS is improved by perform-
ing azimuth compression in the FD. In many cases, SRC is not
needed. However, if the residual RCMC is large after LRCMC,
SRC can be added to the algorithm at the expense of additional
complexity.

A simulation was used to verify the effectiveness of the
NLCS algorithm. Nonparallel paths, nonequal velocities, and
squint were simulated, and the point targets were found to be
well focused.

Operations such as linear phase removal and chirp scaling
were shown to introduce phase changes, Doppler shifts, and
target misregistration. These changes are relatively small, and
they can be compensated at the end if required.

APPENDIX A
EXTENDED NLCS ALGORITHM—2 (WITH SRC)

This appendix shows how the NLCS processing is modified
when SRC is needed.

Most of the range-azimuth coupling is eliminated by the
removal of the linear component of the RCM. However, for very
wide apertures, e.g., L-band and 1-m resolution, the remaining
coupling can still be significant. The remaining coupling is
caused by the residual range curvature, which can be as large
as tens of range cells. For these cases, SRC is necessary before
moving on to range curvature correction.

SRC can be added to the NLCS algorithm by using the
steps outlined in Fig. 12. A range IFT is needed in step 3
so that the linear phase removal can be applied in the time
domain. Range and azimuth FTs are performed so that SRC
can be applied with the correct dependencies of the 2-D FD.
A range IFT is then performed to transform the signal to the
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Fig. 7. Flight geometry and target layout for the simulation. The flight paths are 5◦ nonparallel.

Fig. 8. Twenty-five simulated point targets, which are processed by using the
NLCS algorithm, without SRC.

Fig. 9. Impulse response of corner target 5.

range Doppler domain, so that residual RCMC can be applied
in this domain. An azimuth IFT is performed; thus, the NLCS
FM chirp equalization can be applied in the time domain.
RCMC is performed before NLCS because range curvature can
spread over many range cells. Finally, azimuth compression is
processed in the range Doppler domain to focus the image.

Fig. 10. Impulse response of corner target 21.

Fig. 11. Image of Fig. 8 registered to the ground plane.

The SRC is evaluated at a reference range. It is applied in the
2-D FD because its main dependence is on range and azimuth
frequencies. The phase of the SRC function can be derived by
using the analytical point target result obtained by the MSR
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Fig. 12. Functional block diagram of the extended NLCS algorithm when
SRC is incorporated.

[18]. This derivation was performed in [25], except that in this
paper, the coefficient kA1 = 0 because of the removal of the
linear RCM. Accordingly, the phase of the coupling term for
the reference target A is given by

φsrcA(fτ , fη) ≈ 2π
λ

4kA2

[(
fτ

fo

)2

−
(

fτ

fo

)3
]

f2
η

+ 2π
kA3

8k3
A2

λ2

[
3
(

fτ

fo

)2

− 4
(

fτ

fo

)3
]

f3
η

+ 2π
9k2

A3 − 4kA2kA4

64k5
A2

× λ3

[
6
(

fτ

fo

)2

− 10
(

fτ

fo

)3
]

f4
η . (29)

The coupling is azimuth frequency dependent and increases
away from the zero azimuth frequency, as seen in the 1-m reso-
lution 15-km range L-band example in Fig. 13(a). Fig. 13(b)
shows how the data are less dispersed after SRC, whereas
panels (c) and (d) show the considerable improvement in range
resolution when SRC is applied.

A. Requirement for SRC

The extra FT and IFT operations shown in Fig. 12 require
a significant amount of additional computations; thus, SRC
should only be used when necessary. The phase of the residual

Fig. 13. Illustrating the improvement of the range resolution when SRC is
added. (a) Signal in range Doppler before SRC. (b) Signal in range Doppler
after SRC. (c) Range-compressed target without SRC. (d) Range-compressed
target with SRC.

crosscoupling can be analyzed to determine the requirement for
SRC [28]. It is sufficient to examine the dominant terms in (29).
Neglecting the terms involving f3

τ and f4
η , as well as higher

order ones, the SRC phase can be approximated by

φsrcA(fτ , fη) ≈ πf2
τ

[
λ

2kA2f2
o

f2
η +

3λ2kA3

4k3
A2f

2
o

f3
η

]
. (30)

If SRC is not applied, the maximum phase error in the spectrum
is given by (30), which is evaluated at the edges of the range and
azimuth spectra. The azimuth spectral edge is at fη = Ba/2,
and the range spectral edge is at fτ = KrTp/2, where Ba is the
Doppler bandwidth, Tp is the pulse length, and Kr is the range
FM rate.

If this phase error is greater than the error budget at the
bandwidth extremities, SRC should be applied to the process-
ing. Without applying the SRC filter, the coupling can result
in a poor range impulse response, as shown by the example in
Fig. 13(c) and (d).

B. Discussion

The operations shown in Fig. 12 represent the most rigorous
way of implementing SRC in the NLCS algorithm. A number
of simplifications can be examined, depending on the radar and
geometry parameters, as done in [28, Sec. 6.4.1]. For example,
linear phase removal may be done without the range IFT and
range FT, as its dependence on range is small within the range
invariance region; see (11). This saves an FT pair.

Another factor to consider is the invariance region. The in-
variance region tends to be quite small for highly squinted long-
wavelength wide-aperture cases. For instance, for a monostatic
L-band 1-m-resolution system with a squint of 30◦ at 20-km
range, the range invariance region is only 600 m for 5% res-
olution broadening. Several overlapping invariance blocks are
required to cover a practical range swath of about 3 km or more.
This will further reduce the overall efficiency of the algorithm.
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APPENDIX B
DERIVATION OF THE NLCS PERTURBATION COEFFICIENT

This appendix derives the coefficient α in the perturbation
function in (15). The phases of targets A and C after perturba-
tion are written down. Subsequently, the cubic coefficient of the
perturbation function is selected in such a way that the FM rates
of targets A and C become equalized.

The azimuth signal for reference target A, after introducing
the cubic perturbation function exp{jπ α η3}, is given by

sApert(τ, η) = sA(τ, η) exp{jπαη3} (31)

where the parameter α is the coefficient of the cubic perturba-
tion function to be determined.

Then, combining (7), (10), and (12) and ignoring terms
higher than the quadratic, the perturbed signal is given by

sApert(τ, η) ≈ ρr

(
τ − RcenA

c

)
waz(η) exp{jπαη3}

× exp
{
−j

π

λ

[
V 2

T cos2(θsqT )
RT cenA

+
V 2

R cos2(θsqR)
RRcenA

]
η2

}
. (32)

Note that the constant phase term exp{−j(2π/λ)RcenA} has
been ignored here and in subsequent equations. Because the
approximation in (32) only includes the second-order phase
terms, only the linear FM rate component of the targets will
be equalized by NLCS. At the same time, all other effects, such
as the nonstationarity of the bistatic configuration, that create
changes in the quadratic phase of the targets can be equalized
by NLCS because this quadratic component can be absorbed
into the second exponential term in (32).

Similarly, the signal of target C after LRCMC and NLCS can
be written as

sCpert(τ, η) ≈ ρr

(
τ − RcenA

c

)
waz(η − ηC) exp{jπαη3}

× exp
{
−j

π

λ

[
V 2

T cos2(θsqT )
RT cenC

+
V 2

R cos2(θsqR)
RRcenC

]
(η − ηC)2

}
. (33)

Note that the squint angles of target C are assumed to be
the same as target A within the invariance region. Using target
A as the reference, the round trip range of target C can be
approximated as (see Fig. 3)

∆RL= ∆RT + ∆RR

= −(VT sin(θsqT ) + VR sin(θsqR)) ηC (34)
RT cenC= RT cenA+∆RT

≈RT cenA−RT cenA

RcenA
(VT sin(θsqT )+VR sin(θsqR)) ηC

(35)
RRcenC= RRcenA+∆RR

≈RRcenA−RRcenA

RcenA
(VT sin(θsqT )+VR sin(θsqR)) ηC .

(36)

Substituting (35) and (36) into (33) gives

sCpert(τ, η)

≈ ρr

(
τ−RcenA

c

)
waz(η−ηC) exp{jπαη3}

×exp

{
−j

π

λ

[
V 2

T cos2(θsqT )
RT cenA

(
1+

∆RT

RT cenA

)−1

+
V 2

R cos2(θsqR)
RRcenA

(
1+

∆RR

RRcenA

)−1
]
(η−ηC)2

}
. (37)

Expanding the terms further, we have(
1 +

∆RT

RcenA

)−1

= 1 − ∆RT

RcenA
+

(
∆RT

RcenA

)2

+ · · · (38)(
1 +

∆RR

RcenA

)−1

= 1 − ∆RR

RcenA
+

(
∆RR

RcenA

)2

+ · · · . (39)

Using only the first two terms in (38) and (39) and replacing
(η − ηC) by the shifted azimuth time η1, the perturbed signal
at target C [(37)] can be written as

s′Cpert(τ, η1)

≈ ρr

(
τ − RcenA

c

)
waz(η1) exp

{
jπα(η1 + ηC)3

}
× exp

{
−j

π

λ

[
V 2

T cos2(θsqT )
RT cenA

(
1 − ∆RT

RT cenA

)

+
V 2

R cos2(θsqR)
RRcenA

(
1 − ∆RR

RRcenA

)]
η2
1

}
(40)

where s′(.) is a version of s(.), which is shifted by ηC . Expand-
ing (40), the phase terms can be collected as

s′Cpert(τ, η1)

≈ ρr

(
τ − RcenA

c

)
waz(η1)

× exp
{
jπα

(
η3
1 + 3ηCη2

1 + 3η2
Cη1 + η3

C

)}
× exp

{
−j

π

λ

(
V 2

T cos2(θsqT )
RT cenA

+
V 2

R cos2(θsqR)
RRcenA

)
η2
1

}

× exp

{
− j

π

λ

(
V 2

T cos2(θsqT )
RT cenARcenA

+
V 2

R cos2(θsqR)
RRcenARcenA

)

× (VT sin(θsqT ) + VR sin(θsqR)) ηCη2
1

}
. (41)

To find the coefficient α, the sum of the quadratic terms in η1

that involve the target position parameter ηC is set to zero, and
the result is given in (16). The remaining terms in the perturbed
signal are given in (17).

APPENDIX C
INVARIANCE REGION ANALYSIS

This appendix shows how the invariance region size can be
determined, and it depends on the imaging geometry and radar
parameters for each case. The size of the invariance region is
limited by a number of factors. Often, the governing factors are
the residual RCM and quadratic phase errors (QPE), and the
discussion that follows is limited to these two factors only.
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Let the ranges and squint angles of the transmitter and
receiver to a target at position (δx, δy) be defined by
RT (δx, δy), RR(δx, δy), θT (δx, δy), and θR(δx, δy), where δx

and δy are the range and azimuth offsets, respectively, from the
reference target A in the coordinate system after LRCMC. Note
that the position of target A is (0, 0) and these four parameters
are given for target A as RT cenA, RRcenA, θsqT , and θsqR in
the main text.

Processing is done by keeping the squint angles within a
processing block constant. Using (8), the residual linear RCM
of a target for an exposure time Ta is given by

∆Rlrcm(δx, δy)=[VT sin(θT (δx, δy))+VR sin(θR(δx, δy))] Ta

− [VT sin(θT (0, 0))+VR sin(θR(0, 0))]Ta. (42)

Similarly, it can be deduced from (17) that the quadratic RCM
of the target is

∆Rqrcm(δx, δy)=
1
2

{
V 2

T cos2(θT (δx, δy))
RT (δx, δy)

+
V 2

R cos2 (θR(δx, δy))
RR(δx, δy)

}(
Ta

2

)2

− 1
2

{
V 2

T cos2(θT (0, 0))
RT (δx, δy)

+
V 2

R cos2(θR(0, 0))
RR(δx, δy)

}(
Ta

2

)2

.

(43)

Because RCMC is corrected to target A, the residual RCM
of the target at (δx, δy) is the sum of the residual linear and
quadratic components, and it is given by

∆Rrcm(δx, δy)= |∆Rlrcm(δx, δy)|+|Rqrcm(δx, δy)| . (44)

Within a processing block, the residual RCM should be
kept within a fraction of one range resolution cell ρr. Let this
fraction be γrcm, which is nominally set to be less than 1. The
maximum range deviation ∆xrcm from target A is found from
the following:

∆Rrcm(∆xrcm, 0) < γrcmρr. (45)

Similarly, the maximum azimuth deviation ∆yrcm from
target A is found from the following:

∆Rrcm(0,∆yrcm) < γrcmρr. (46)

Moreover, within a processing block, the QPE should be
limited by γqpeπ, where γqpe is nominally set to less than 0.5.
As the QPE is governed by the residual quadratic RCM, the
maximum range deviation ∆xqpe from target A is found from
the condition

2π

λ
|∆Rqrcm(∆xqpe, 0)| < γqpe (47)

and the maximum azimuth deviation ∆yqpe is found from the
following:

2π

λ
|∆Rqrcm(0,∆yqpe)| < γqpeπ. (48)

Finally, the range invariance region size is as follows:

∆Xir = 2min{∆xrcm,∆xqpe} (49)

and the azimuth invariance region size is as follows:

∆Yir = 2min{∆yrcm,∆yqpe}. (50)
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