Application of momentary Fourier transform to SAR

processing

S.Albrecht and [.Cumming

Abstract: A common technique in signal and image processing is to extract a portion of the signal
by windowing, and then perform the DFT on the window contents. The momentary Fourier
transform (MFT) applies to the particular case where the window is moved one data sample along
the signal between successive transforms. An alternative derivation of the recursive form of the
MFT using general matrix transforms is given. How DFTs and IDFTs are used in the SPECAN
and SIFFT methods of synthetic aperture radar (SAR) processing is described. The MFT and
inverse MFT are applied to these methods and the advantages and disadvantages they have

compared to the FFT/IFFT algorithms are shown.

1 Introduction

The discrete Fourier transform (DFT) is a widely used tool in
signal or image processing and its efficiency is important.
There are applications where it is desirable to use relatively
small, successive, overlapped DFTs to obtain the spectrum
coefficients. The momentary Fourier transform (MFT)
computes the DFT of a discrete-time sequence for every new
sample in an efficient recursive form. In this paper we give an
alternative derivation of the MFT using the momentary matrix
transform (MMT). Recursive and nonrecursive forms of the
inverse MFT are also given, which can provide efficient
frequency domain manipulation (e.g. filtering).

Uses of the incremental DFT were introduced by Papou-
lis in 1977 [1], and by Bitmead and Anderson in 1981 [2].
A detailed derivation of the momentary Fourier transform
was given by Dudas in 1986 [3]. In 1991, Lilly gives a
similar derivation, using the term ‘moving Fourier trans-
form’, and uses the MFT for updating the model of a time-
varying system [4].

After discussing the properties and arithmetic require-
ments of the MFT we investigate the applicability of the
MEFT to synthetic aperture radar (SAR) signal processing.
In particular, we show what advantages the MFT algorithm
offers to the SPECtral ANalysis (SPECAN) method and
burst-mode SAR processing. In the SPECAN algorithm,
received signals are multiplied by a reference function in
the time domain, and overlapped short-length DFTs are
used to focus the data. The azimuth FM rate of the signal
varies in each range cell, which leads to the issue of
keeping the azimuth resolution and output sampling rate
constant. After the introduction to SPECAN, we show
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what advantages and disadvantages the MFT has compared
to FFT algorithms.

When a SAR system is operated in burst mode, its
azimuth received signal has a segmented frequency—time
energy in its Doppler history. It requires that inverse DFTs
(IDFTs) be located at specific points in the frequency
domain to perform the azimuth signal compression. After
the introduction of the burst-mode data properties, we
show why the short IFFT (SIFFT) algorithm has the
requirement of arbitrary-length, highly-overlapped IDFTs
to process burst-mode data, in which case the IMFT is
shown to have computational advantages.

2 Theory of momentary matrix transformation

2.1 Recursive momentary matrix transformation
Let x; be a sample of an arbitrary complex-valued sequence of
one variable. The sequence will be analysed through an N-
point window, ending at the current sample i. In subsequent
analyses the window will be advanced one sample at a time. At
time i, sample x; enters the window, while x;_, leaves the
window. Atsamples i — 1 and i, the windowed function can be
represented by the following two column vectors:

Xi-N Xi—(N-1)

X1 = ’ X = (1)
Xi—2 Xi—1
Xi-1 Xi

Let T be an Nx N nonsingular transformation matrix,
which has the inverse T~ !. The sequence of windowed
vectors can be transformed by T at each sample

Vi =Txy, yi=Tx;, ... ¥))
Let P be the N x N elementary cyclic permutational matrix
o010 -0
010
P= 010 3)
0 - 01
0 0
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When the vector x;_; is premultiplying by P, a one-element
circular shift is performed, such that the index of each
element is increased by one, and the first element becomes
the last one

Xi—(v-1)

Px_=| - @

Xi—1

Xi—N

Then the x; vector can be expressed by the shifted x;_,
vector, with an adjustment 4x; made in the last row for the
difference between the samples entering and leaving the
window

Xi—(N—1) 0
X = + = Pxi—-l + Axi (5)
Xi_1 O
Xi—N Xi —Xin

Substituting eqn. 5 into the transformation associated with
the ith window in eqn. 2 and using the inverse transform
x;_y =T"y;_,, the following relationships are obtained:

y;=Tx,=T[Px,_, + 4x]] = TPT 'y, , + T4x; (6)
Eqn. 6 expresses the recursivity of the momentary matrix
transform (MMT), since calculation of the newly trans-
formed vector y; is obtained from the previously trans-
formed vector y;_; and the difference between the samples
entering and leaving the window.

2.2 Diagonal form of MMT

The momentary matrix transform is particularly efficient
and the elements of y can be calculated separately only if
the similarity transform TPT~! in eqn. 6 is diagonal. The P
matrix has /V distinct elgenvalues (10, ..., Ay_1) which are
the nth complex unit roots, A, = — &%V There are N
linearly independent eigenvectors that correspond to each
eigenvalue

-1 _ | -
1 wk
)LO<=>sO= ,1k<=>sk= . yeeny
1] [ - (v-0k |
_ | -
W=D
An_1 © sy = : ‘ ™
w(V=DV=1) |

If the eigenvectors are chosen to be the columns of the
inverse of matrix 7, then TPT~ 1 is a diagonal matrix, with
the eigenvalues of P along its diagonal

TPT ' =87'PS =[s5's7" -+ - syL 1Plsgs; - - - sy
Chg O - - 0 '\
A4 0
= A 0 @®)
0 . . . 0
L0 0 : . A’N—l .

where § is the eigenvector matrix of P made up of the
indicated column vectors, as given in eqn 7. The diagona-
lising matrix .S is not unique. An eigenvector s, can be
multiplied by a constant, and will remain an eigenvector
[5]. Therefore the columns of § can be multiplied by any
nonzero constants and produce a new diagonalising S.
There is also no preferred order of the columns of S! The
order of the eigenvectors in S and the eigenvalues in the
diagonal matrix is automatically the same. Therefore lall T
matrices which satisfy these properties will dlagonahse the
momentary matrix transform i

[
W 0 - - 0 1
40 - 0 !

Y= 0 yi—1+TN—I(xi_xiAN)}‘ ®
0 - - - 0 |
00 - - A ‘

m !

where k£, [, me {0, 1,...,N

— 1)} and Ty_, is the last
column of the matrix T. '

I
2.3 Inverse of diagonalised MMT \‘
If y; is available at each sample and the columns of \T are
the eigenvectors of P, an efficient 1mplementat10n of the
inverse of the MMT can be obtained. The inverse MMT
(IMMT) at time i is !

|

X; = ! ¥ (10)
vy [1 1 1 1 1 )
1 w! w2 —(N=1)
Xiy
L x| L1 oweD 20 w=DE=1)
[ yio ]
i1 ,
x j‘(n)
1
LYVinN-1

The first row of T~! contains only ones so the oldest
element of x; can be computed using adds only

. ‘
Xi—(N=1) = ny,k (12)
=0

IEE Proc.-Radar, Sonar Navig., Vol. 146, No. 6, December 1999



from which the elements of the input sequence
(5—@-1)---X;) can be computed from the transform
domain sequence y; with an N-1 sample delay.

In summary, the recursive form of the MMT is general.
The following Section shows that the DFT/IDFT is the
only transform which has the efficient diagonal form eqn.
8, as a result of its column vectors being the eigenvectors
in eqn. 7 in a specific order.

3 Momentary Fourier transform

The matrix of the discrete Fourier transform (DFT) and the
inverse discrete Fourier transform (IDFT) have the proper-
ties described in Section 2.2, thus their columns are the
eigenvectors of the matrix P. Choosing a specific order of
the eigenvectors of P (columns of §),

DFT=F=5"!
11 1 . 1
1w wtooo. wh=!
=1 w? wh wAN=1) (13)
1 w1 ,20v-D W=DN-1
IDFT=F'=§
B! 1 1 . 1
1 w! —2 w—N=1)
— % 1 —2 w4 w2v-1)
|1 W=D 21 W W=D-1)
M1 1 . 1 1
1 wh=! S w? w
=% P w? (14)
| 1 wWA=DW-1) W2N=1) N-1

Using the fact that w is the Nth complex root of unity (i.e.
w~ = w"=k)_it can be seen that the columns of the IDFT
matrix are the same as the DFT matrix, but they are in
reverse order from the second column onwards eqn. 14.
Therefore if T performs the DFT eqn. 15 or the IDFT eqn.
16, diagonal forms of the MMT can be obtained

1 0 0

wl 0 0
yi=FPF 'y, +FdAx;=| - - w? 0
0 . 0
0 0 w V=D
1
W~1
Yo+ | w? o |Gi—x_y) (15)
)]
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x; = F'PFx,_, + F~' 4y,

1 0 . -0 ]
w (V=D 0 -0
= w— (=2 ¢ X;_
0 . 0
L O 0 wl |
-
W=D
o A (7Y (16)
wl

Eqn. 15 expresses the recursive equation of the momentary
Fourier transform (MFT) [3, 4, 6, 7]. The N-element vector
¥, contains the Fourier coefficients of the N-point sequence
x; ending at sample i. Note that each spectral component
Yix can be calculated independently,

Yik = w_k(yi—l,k + X —x;i_py) (17

which increases efficiency if only a few frequency compo-
nents need to be computed, as in the zoom transform.

On the other hand, eqn. 16 is the dual of the MFT, the
recursive inverse momentary Fourier transform (IMFT),
where the N-element vector x; contains the N-point data
sequence and y; contains N Fourier coefficients ending at
frequency bin i. Note that the each sample in x; can also be
obtained independently and that the same twiddle factors,
but in a different order, can be used to calculate both the
MFT and IMFT.

Thus it has been shown that if the DFT or the IDFT
performs the momentary matrix transform of a sequence,
the elements of the transformed sequence can be computed
recursively and independently using N complex multiplies
and N+ 1 complex adds (additional computational savings
are available if the input sequence is real-valued).

3.1 Nonrecursive inverse MFT

The nonrecursive inverse momentary Fourier transform
(IMFT) can be expressed using eqns. 12 and 16 as follows:

1 N-1
Xi--1) = 3 Zyi,k (18)
=0

from which each sample of the input sequence x; can be
computed using adds only from the two-dimensional time-
dependent spectrum y; with an N — 1 sample delay. In this
way the MFT-nonrecursive [MFT] transform pair eqns 15,
18 can provide an efficient frequency-domain manipulation
method (e.g. filtering), especially if many of the DFT
coefficients are not needed.

If the elements of x; are real, one can take advantage of
the conjugate symmetry of the spectrum, and the oldest
element can be computed using only the real part R of the
spectrum:

N-—1

X (V= 1) =5 3 Riyy) (19)
k=0
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It has been shown [3] that if x; is real, the Hilbert transform
H of x;_gy_yy can be obtained by summing only the
imaginary part I of the spectrum coefficients

N-1

‘yf{xi——(N—I)} = N S{yi,k} (20)
k=0

In this case, the MFT-nonrecursive IMFT pair can be
useful for different signal processing applications where
the in-phase and quadrature components of the signal are
needed (i.e. communications and radar systems).

4 Implementation of MFT

As shown in Section 3, the spectrum components in the
MFT algorithm can be calculated independently of each
other. Thus, the MFT can be implemented using a
sequence of identical blocks, where a block computes the
spectrum at a single frequency using eqn. 17. The software
implementation of one MFT block can be obtained using
the trigonometric form of the equation

Vik =W s + % — Xiy) 21

where w ™k =e2™/N = cos(®@,) +jsin(®,), @, =2nk/N,
and equivalently,
Ry e} = cos(@ )Ry, + Rl — x_ )
= sin(@) ({4} + S —x_p D
Six) = cos(@)(S{y;_y 1} + 3{x; — xi_ )
+sin(@)(Myi—1 i} + Rlx; —x_v}) (22)

Eqns. 21 and 22 correspond to the A&th MFT block for the
complex sequence x;, and y;, is the kth spectrum compo-
nent at sample i. The MFT blocks can be organised in a for
loop to calculate the needed DFT coefficients. The follo-
wing pseudocode segment illustrates the computer coding
of the MFT algorithm, assuming the sine and cosine arrays
(twiddle factors) have been precomputed:

calculate (x; —x;_y);

for k = start to start + N, — 1 do
MFTblock(k); %

endfor

computed as in eqn. (22)

where N, is the number of DFT coefficients to be
computed, 1 <N, <n. The index of the ‘for’ loop indicates
that it is possible to compute only a small group of the DFT
coefficients. If N, <n or if another subset of the coeffi-
cients are to be calculated, we refer to the MFT as a
‘reduced-MFT’, where significant computation savings
can be realised if not all of the spectral coefficients are
needed. If the calculation of the spectrum coefficients is
off-line, the difference of the entering and leaving samples
of the window can be calculated for the whole data set and
stored in a file or an array in memory. If it is on-line, a
modulo-N array is needed to calculate x; — x;_ .

Table 1 gives the memory requirements of the MFT
algorithm. The memory requirements depend on the
number of calculated spectrum coefficients. If the whole
spectrum is computed, an 8N word memory is needed for
the computation. Assuming that the input signal has 16-
bits of precision, and 16-bit accuracy is required at the
output, the MFT arithmetic should be done with a word
length of at least 24 bits, as the multiple stages of the MFT
algorithm will create more roundoff noise than the log, N
stages of the FFT.
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Table 1: Memory requirement of MFT (words)

Array type Size
Twiddle factors (sine and cosine array) 2N,
Modulo-N FIFO for complex x; — x;_y 2N

Spectrum coefficients at time i — 1 (y;_14) 2N,
Spectrum coefficients at time 7 (y; ) 2N,

4.1 Example of MFT usage

To illustrate the usage of the incremental form of the MFT,
a frequency shift key (FSK) modulated sinusoidal signal of
length 4N samples is used. Using an analysis window
length N=100, and two frequencies of five cycles per
window and 29 cycles per window, the magnitude of the
evolving spectrum is shown in Fig. 1, when the MFT is
incremented by one sample at each analysis stage.

The MFT begins with the initial conditions of y, =0.
This is equivalent to having N zeros precede the data
vector. In Fig. 1 note how the energy in the spectrum
rises from zero to a maximum in the first N samples. Also
note how spectral leakage is observed in the first N — 1
time samples, because the sinusoidal signal does not have
an integer number of cycles per window over this time. At
time N, there is an integer number of cycles per window, so
all the energy in the spectrum lies in one bin. For the next
N — 1 samples, leakage occurs again as the window slides
towards to the next frequency component of the signal. The
spectral energy of the Sth frequency bin decays td zero
while the spectral energy of the 29th bin rises to its
maximum. This spectrum energy swapping between the
two frequency bins is repeated as the window is m0v1ng
through the two frequency components.

In Fig. 2, the same FSK signal is analysed in the
presence of noise (SNR=0dB). The spectrum energy
swapping between the two frequency bins is also notice-
able, which shows how the MFT can be useful for signal
detection in a noise environment. The MFT can be useful
here if the FSK switching times are not known.

5 Computing efficiency of MFT

This section examines the computing efficiency of the
MFT compared to traditional DFT and FFT implementa-
tions. Although computing efficiency has many ramifica-
tions, we restrict attention to the number of real-valued
‘signal processing’ operations (multiplies and adds)
required to implement the algorithms.

Consider the case where N-point DFTs are used to
analyse an M-point complex-valued data record. If the
window is shifted by g samples between each DFT appli-
cation, where 1 <g <N, then (M — N)/q+ 1 DFTs are
needed to spectrally analyse the record in the case of the
FFT. If the MFT is applied, M MFTs are needed, because
the spectrum coefficients have to be calculated at each time
sample, irrespective of the value of ¢g. Then, when I'ELle 2
FFTs are used,

OPSerr = (M — N)/q + 1)5N log,(N) (23)
real operations are needed, while in the case of the MFT
OPSyrr = M(8N, + 2) 24)

real operations are needed to analyse the whole record. In
this way, the MFT becomes efficient relative to the FFT
when the shift g is small. From eqns. 23 and 24, the

IEE Proc.-Radar, Sonar Navig., Vol. 146, No. 6, December 1999



amplitude

magnitude

frequency, 40

cycles/N samples

50

Fig. 1 FSK signal analysis using the MFT: FSK signal (top) and time-varying spectrum (bottom)

number of shifts ¢~ between DFTs when the MFT is
more efficient than the radix-2 FFT is less than
(M — N)5N log,(N)
qmrr <
M@BN, — 1) — 5N log,(N)

@5

qurr 18 a function of the length of the data record M, the
size of the window N and the number of calculated MFT
coefficients N,. In Fig. 3, the shift between DFTs when the
MFT is more efficient is shown as a function of the window
length, for two values of N,.

amplitude

magnitude

frequency, 40
cycles/N samples

The full MFT is more efficient compared with the radix-
2 FFT if the shift between DFTs is very small (gprr <5),
while the reduced MFT (N, =N/4) is more efficient even
for larger values of shift. Note, if the data record is longer,
the values of g,y are larger for all window sizes. The
computational load for g,y =1 is illustrated in Fig. 4.

The arithmetic of the MFT is linear with the computed
spectrum coefficients N, and the length of the data record
M. For a given record size, the MFT arithmetic remains the
same with varying shifts, while the FFT arithmetic drops
down considerably as the value of shift gets larger.

~“~400

Fig. 2 Signal detection using the MFT: FSK signal with noise (top) and time-varying spectrum (bottom)
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Fig. 3  Shift between DFTs for which the MFT is more efficient than the
radix-2 FFT
Total samples analysed = 5000
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Fig. 4 Comparison of MFT and FFT arithmetic when Qupp =1

Total samples analysed = 5000
* radix-2 FFT

O full MFT

< 1/4N MFT

The computational order of the MFT to recursively
calculate the coefficients of an N-point DFT is N, a factor
of log, N improvement over the FFT. If only a subset of the
spectrum components are needed, the computing load of
the MFT can be further reduced, calculating only the
frequency coefficients of interest. The MFT does not rely
on on N being a power of two to obtain its efficiency, in
contrast to standard FFT algorithms. In this way the MFT
can provide more efficient computation of the DFT when
any or all of the following conditions apply:

e DFTs are highly overlapped,

e only a subset of the Fourier coefficients are needed
and/or

o a specific, noncomposite DFT length is needed.

Considering these MFT properties, we see that it can be
useful in different applications of signal processing such as

e on-line computations in real-time spectral analysis,
e on-line signal identification and detection

e speech processing and

e radar and sonar processing.

6 Application to SPECAN algorithm

The SPECtral ANalysis (SPECAN) algorithm [8, 9] is an
alternative to conventional processing algorithms for SAR
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azimuth compression. It consists of two major computa-
tional steps

e deramping, and
e weighted DFT.

Deramping is the operation of multiplying the received
linear FM signals with a complex conjugate reference
signal having the same FM rate K,, but opposite FM
slope. In radar processing, deramping can be done in
range or in azimuth, but in our context we deal with the
azimuth signal. The deramping operation turns the linear
FM target signals into constant-frequency sine waves, with
frequency proportional to azimuth position. When viewed
in a frequency/time diagram, the deramped target ernergy
exists in parallelogram-shaped regions, as illustrated by the
six targets in Fig. 5. Each deramped target in the paralle-
logram has a unique time span and a unique frequency
ranging from 0 to F,, where F, is the azimuth sampling
rate or pulse repetition frequency. The base of the paralle-
logram is M=F2/K, samples long and the DFTs are N
samples long, in input time space.

The next step in the processing is to separate the target
energy into different output cells, corresponding to their
azimuth position. This is done by performing short-length
DFTs across the deramped data. The placement of the
DFTs for the four-look case is shown in Fig. 5, where the
DFT length is N samples. Weighting is used in the DFTs
for sidelobe control, which means that the looks should be
overlapped a small amount to obtain uniform energy
utilisation.

6.1 SPECAN SAR processing using MFT

The azimuth FM rate of the received SAR signal is
inversely proportional to range, so it changes as the
range varies in each range cell. To keep the resolution
and output sample rate constant across the range swath
there is a need to choose different DFT lengths, with the
DFT length increasing one sample at a time as range
increases. The effect of the varying range on the azimuth
FM rate and on the desired DFT length for a typical
airborne radar case is shown in Fig. 6. The radar para-
meters used are given in Table 2. Note that there is a:need
for a wide range of DFT lengths to keep the resolution
constant through the whole swath. ‘

The radix-2 FFT can only be used when the DFT length
is power of two. In other cases of window length, mixed-
radix FFT algorithms are used to achieve efficiency when N
is a highly composite number. However, this makes the
architecture of the SPECAN processor rather complex
when many different FFT lengths are needed. In contrast

le——— M samples —
Fa —~ -~
, g
a,/ target 6 "/
T Took )
L:f ,'/ 4 target5 ,/
@ e /
3 3 Took| [Took ¥ [
L 4 3 target4 - !
= , :
‘g look] |look 7 ;
E 3 2 d
J| G ; 7
o look| [look| - \ !
,/target 2 2 1|7 slope=K,=F,/T,
s 7" [look g
Vtarget1 L 1 -
0 d ’ .
DFT 2 azimuth time
DFT 1| ‘
>

Fig. 5 Processing regions of SPECAN algorithm |
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Fig. 6 Azimuth FM rate and DFT length with varying range, airborne
SAR case

—— azimuth FM rate
———— DFT length

Table 2: Airborne SAR parameters assumed for
SPECAN arithmetic calculation

Radar parameter Value Units
Platform velocity V, 120 m/s
Wavelength 1 0.057 m
Weighting parameter ¢ 0.68

Guard band g : 0.15

Slant range R 620 km
Sampling frequency F, 300 Hz
Number of looks N, 10

Azimuth resolution o 4 m

to FFT algorithms, the structure and the efficiency of the
MFT does not depend on the size of the DFT.

In the DFT operation only a portion of the spectrum
coefficients (the good output samples G) are used to obtain
the compressed output data from each DFT. The number of
these spectrum components are the same from one DFT to
the next, but their position changes with each DFT. So, a
simple reduced-MFT algorithm cannot be used. The arith-
metic of the required reduced-MFT algorithm is introduced
subsequently.

For the first MFT (e.g. DFT 1 in Fig. 5) all of the good
output samples are computed for the first time, so using
eqn. 24 the arithmetic of the first MFT is

MFTOPS o, = N(8G + 2) (26)

For the next MFT (DFT 2 in Fig. 5) the position of the
subband of the good output points is shifted towards to the
higher frequencies by L samples, the number of output
samples per look. Thus, there are L new frequency compo-
nents to calculate in addition to the G — L recalculated
ones. The number of real operations needed for the L new
coefficients is

MFTOPS ey yow = N(SL + 2) @7)

while the arithmetic of the previously computed G — L
spectrum coefficients is

MFTOPSppr; o1g = q(8(G — L) + 2) (28)

where g is the input sample shift between successive DFTs.
The ‘new’ and the ‘old’ spectrum coefficients have to be
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computed (M — N)/q — 1 times through the whole region.
Using eqns. 26 to 28

MFTOPS = N(8G +2) + (? - l)(N(8L +2)

+q(8(G — L)+ 2)) (29)

real operations are needed to process the whole processing
region with the reduced MFT. Although eqn. 29 looks
rather complex, the implementation of this reduced-MFT
algorithm is the same as the full MFT algorithm, except for
the timing and synchronisation of the sub-band of the
spectrum coefficients. The weighting can be implemented
using a short-length convolution after the MFT. The
arithmetic of the weighting is not included in the present
calculations.

Fig. 7 shows the number of operations of the SPECAN
azimuth compression for the airborne radar case, covering
the range of DFT lengths defined in Fig. 6. In this figure we
compare the arithmetic of the direct DFT algorithm, the full
and reduced MFT, the mixed-radix and the radix-2 FFT. In
Fig. 7 the FFT arithmetic is generally smaller than the MFT
arithmetic, although it is quite variable as the radix changes
throughout the range swath.

In the SPECAN algorithm the resolution is inversely
related to the DFT length, thus larger DFTs are needed to
obtain finer resolution. As the DFT length gets longer the
number of good output points per DFT will shorten,
therefore more DFT blocks with higher overlap ratios
will be needed to cover the processing region (Fig. 5).
Thus as the processed resolution increases, the MFT will
become more efficient relative to the mixed-radix FFT.

6.2 Output sample rate

Besides the complexity and computational efficiency,
another important issue in the SPECAN algorithm is to
keep the output sampling rate constant. In other words,
targets which are T seconds apart in azimuth input time
must appear 7' seconds apart in the output data. It was
shown in [8] that the azimuth output sample rate is

r _KN 202
out — F AR

a

[Hz] where K, =

[Hz/s]  (30)

The output sampling rate strongly depends on the azimuth
FM rate K,, so when it changes with R throughout the

no.of operations (x10
o

150 200 250 300 350 400 450
window size, samples

Fig. 7 Arithmetic of SPECAN azimuth compression with different DFT
algorithms, airborne SAR case

------ DFT

——  mixed-radix FFT

———— full MFT

—-—-  reduced MFT
. radix-2 MFT
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Fig. 8 Output sampling rate of SPECAN algorithm

——— radix-2 FFT, N=256 and 512
—— MFT

swath, there is a need for a slowly varying DFT length to
keep the output sampling rate constant. Fig. 8 shows F,,,
as the function of range, when the MFT and the radix-2
FFT is applied in the SPECAN algorithm to the airborne
system. Note that when the MFT algorithm is used the
output sampling rate is more uniform. During the applica-
tion of the radix-2 FFT, only two transformation lengths
128 and 256 can be used, which is the reason for the large
change of the output sampling rate in this case.

7 Application to burst-mode SAR processing

Burst-mode operation is used in SAR systems such as
RADARSAT or ENVISAT to image wide swaths, to save
power or to reduce data link bandwidth [10]. In this
operational mode the received data is windowed in a
periodic fashion in the azimuth time variable which results
in a segmented frequency—time structure of its Doppler
energy. This frequency—time pattern requires special
processing to maintain accurate focusing, consistent
phase and efficient computing.

7.1 Properties of targets in burst-mode data

A typical two-beam burst-mode data collection pattern is
shown in Fig. 9, where 16 targets are depicted. The targets
are all in the same range cell, and are evenly spaced in
azimuth time. The azimuth time variable runs down the
page, and the staggered vertical lines in the top left panel
show the exposure time of each target. In this example, the
burst length is chosen to be 20% of the aperture length, and
the solid parts of each line show that part of each target
actually exposed in burst mode. Each burst of data is
followed by an equal-length gap.

Note that the part of the target exposure captured in
burst mode varies with each target, which is illustrated in
the frequency-time diagram in the top right panel of Fig. 9.
Each successive target is received at a lower Doppler
frequency within a given burst, but is later captured at a
higher frequency in the next burst as long as it stays within
the beam. The slope of the lines in this part of the Figure is
given by the azimuth FM rate K,

K,=F,/T, [Hz/s] 1)

where F, is the radar pulse repetition frequency (PRF) and
T, is the time taken for a target to generate a Doppler
frequency span of F, (which we refer to as the synthetic
aperture time or the total beam exposure time).
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The Doppler history of the 16 targets is shown in‘f the
bottom panel of Fig. 9. As T, equals five burst lengths in
this case, £, in the frequency domam consists of five burst
bandw1dths This lower plot shows the distribution of
target spectral energy when an azimuth DFT is taken
over four bursts plus four gaps, as shown in the top:left
of Fig. 9. Note that some targets appear in two full bu rSts
(targets 6 and 16), some appear in three full bursts (tarvets
1 and 11), while others appear in two full and one partial
burst. In this case the average number of target exposures
or bursts per aperture is 2.5. |
If single-look complex processing is to be done there'is a
choice of which bursts to use for each target. Normally, the
target exposures closest to the Doppler centroid F,;, will be
selected, as shown by the heavier lines in the lower pait of
Fig. 9. However, other bursts may also be chosen, e.g.
when the data is processed for InSAR purposes, or for
speckle reduction purposes.

7.2 SIFFT burst-mode processing algorithm

Most SAR processing algorithms are based on the fast
convolution principle where a matched filter is applied in
the azimuth or Doppler frequency domain. When this
method is applied to burst-mode data, the interburst gaps
are filled with zeros and all the bursts are compressed at
once using a full length matched filter followed by an IFFT.
However, the compressed targets are then left with a burst—
induced modulation [11].

The SIFFT algorithm differs from the conventional fast
convolution algorithm in that short, overlapped IFFTs are
taken after the matched filter multiply in the Doppler
domain [12, 13]. The IFFT lengths are chosen so that
when one burst of a target is fully captured by the IFFT,
little or no energy from adjacent bursts of the same target is
present in the same IFFT. In this way each IFFT
compresses a group of targets without interference (modu-
lation) from other bursts, and an accurate impulse response
is obtained.
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To capture a target fully, the length of the IFFT must be
at least as long as the bandwidth of one burst of that target,
which is

K
BWy, = NpKe [Hz] or
F,
NyKpN,
BW,,, = b ;;2 RiLs [frequency bins]

where N, is the burst length in samples and Nppp is the
length of the azimuth FFT in samples. Then the minimum
IFFT length is

NIFFT min = BWbin = %

a

The IFFT cannot be longer than the bandwidth of one burst
plus one gap, so that a. fully-exposed target is not contami-
nated by a partial exposure of the same target at a different
frequency. In the N,,-beam scanSAR case the length of the
gap is often equal to N, — 1 times the burst length, in
which case the maximum-length IFFT is

N,K,N,
NIFFT max = ]vaWbin = Nm#m

[samples] (33)

[samples] (34)

Note that Nyzrre. and Nygpp., vary with range and with
Nrpr. The effect of this property is discussed in the next
subsection, where the arithmetic of the SIFFT is given. The
length and locations of IFFT,,, and IFFT,,, that can be
used to extract targets from that part of the spectrum with
the highest energy are shown in Fig. 10. In the case where
the maximum possible DFT lengths are selected, two
IFFTs are shown, such that IFFT,, ., and IFFT,,,., together
compress the complete set of targets shown in the Figure.
Then the outputs of these two IDFTs are stitched together
to form a contiguous set of compressed targets. The targets
compressed are shown by the heavier black horizontal
lines.
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= ® ;; } - *
§_ 73 /3/ T — T
3 % EERKES : : 12 4
}E X 1 1 N
\3\ ! i i burst 3
M 1 -
/%%g i T | T
— ¢ : target
B1
' i )
¥ B4

burst 1.

-burst 21 -burst 3
! ! biIRET GRS

1 i N
! AN O
v : !
m ml
frequency

Fig. 10 How IDFTs are placed to compress groups of targets from each
burst

(i) targets after this synthetic aperture
(ii) targets previous to this synthetic aperture
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Fig. 10 is a more detailed version of the lower panel of
Fig. 9 with one main addition. We have included partially
exposed targets which preceed and follow the fully-
exposed targets 1-16, and which are at least partially
captured by the 4 +4 burst FFT. These partially-exposed
targets are located before and after targets 1-16 and are
denoted by B1-B24 (dark shaded region) and A1-A24
(light shaded region), respectively. FFT wraparound makes
the targets B1-B24 appear at the end of the spectrum. Left-
and right-sloping cross-hatching is used to indicate which
targets come from each of the two IDFTs.

It can be seen that IFFT,,, captures the complete
energy of a single burst of targets 1, 6-11, 16-AS5, B10-
B15 and B20-B24. For these targets IFFT,,., does not
extract any energy from other bursts so their impulse
response is not corrupted by modulation. Similarly,
IFFT,,.» captures the complete energy of a single burst
of targets 1-6, 11-16, A5-A10 and B15-B20 and between
the two IFFTs, all the targets are correctly compressed.

Fig. 10 also shows the size and starting location of the
minimum length IFFT, which is used in the efficiency
calculations of the Appendix. The next IFFT,,, is shifted ¢
samples to the left of the one shown.

To form a continuous output image the results of
successive IFFTs are stitched together. If only bursts with
the highest energy are used to compress targets, each
output target gets placed in a different output cell. Note
that not all of the partially exposed targets shown in Fig. 10
can be compressed with the best SNR in this FFT, but they
can be in preceding and following FFTs. Targets A16-A24
cannot be compressed at all with this FFT because none of
the bursts covers them completely. Also note that targets
before the full synthetic aperture (B10-B24) get
compressed at the end of the output array, but their position
can be correctly identified and rearranged in the output
array.

7.3 Efficiency of SIFFT algorithm using IMFT

7.3.1 ENVISAT parameters: To show the efficiency
of the SIFFT algorithm using the IMFT against the IFFT
implementation we use the parameters of the alternating
polarisation (AP) mode of the ESA ASAR on the ENVI-
SAT satellite. The AP mode provides medium resolution
products (approximately 30 m) in any of the seven swaths
located over a range of incidence angles from 15 to 45°
with polarisation changing from subaperture to subaperture
within the synthetic aperture. Effectively, a two-beam case
ScanSAR technique is used but without varying the beam
elevation angle. The effective radar velocity of the satellite
is ¥,=7000 m/s, the radar wavelength is 4=0.0567m,
and the azimuth FFT length is set to 2048 and 4096 for the
efficiency evaluation. Other parameters of the seven swaths
are given in Table 3.

Table 3: ENVISAT swath parameters

Swath PRF [Hz] Burst/gap length [samples] Range [km]
1S 1 1678 194 825-864
IS2 1645 196 843-891
1S3 2096 257 887-934
IS 4 1680 218 929-990
IS5 2082 277 983-1032
IS 6 1698 238 1027—1087
IS7 2070 297 10801133
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7.3.2 Effect of varying SAR parameters and
SNRy efficiency tradeoffs: As the azimuth FM rate of
the received SAR signal is inversely proportional to range,
the bandwidth of the bursts eqn. 32 varies with range
because the burst length is constant in the time domain. At
near range the bandwidth is a maximum while at far range
it is a minimum, as shown in Fig. 11 for swath IS1. In a
swath the minimum IFFT length N;grr,,;, should be at least
as long as the maximum BW),;, to compress all the targets
in each range cell correctly. Because of different burst
bandwidths, this minimum IFFT length is different for
each ENVISAT swath. The SNR of the SIFFT algorithm
depends on the ratio of the IFFT length and the burst
bandwidth, both expressed in bins [13]. The SNR is
maximum when the IFFT length is equal to the burst
bandwidth (Nppr = Niggprmin), While the SNR is 3dB
lower when the IFFT window is one burst plus one
equal-sized gap long (Njppr = Nipprma)- S0 to keep the
SNR loss below a certain value across the swath there is a
need to choose specific azimuth IFFT lengths. The change
in SNR for a given IFFT length is

N,

dSNR = 1010 ’“’T) 35
gIO( BW,, (35)
The IFFT length should be kept constant with range to
keep the compressed sample spacing uniform. Then, as the
burst bandwidth decreases with range, the minimum IFFT
length is set at near range, and the SNR will decrease
slowly with range. Fig. 11 shows how dSNR changes with
range in the case of IS1 swath and Ngzp =2048. The
decrease in SNR is zero at near range and rises to about
0.2dB at far range. Note that although BW,,, in eqn. 35
depends on Nggr, the slope and maximum of dSNR is the

same for different azimuth FFT lengths.

7.3.3 Arithmetic of SIFFT using IMFT and IFFT
algorithms: During the efficiency evaluation of the
SIFFT algorithm, the full-IMFT, the reduced-IMFT and
the mixed-radix IFFT algorithms are considered. A formula
for the arithmetic of each algorithm is developed in the
Appendix. During the efficiency evaluation, we choose the
IDFT lengths on the principles

e maximum SNR at near range
e minimum sampling rate at near range, and
e the sampling rate constant with range

and consider two possible forward azimuth FFT lengths of
2048 and 4096 samples.

2731 105
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Fig. 11  Burst bandwidth and dSNR of IS1 swath

Number of windows to choose from = 1; N, = 194; Ny =2048
burst bandwidth
———— dSNR
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First we make the IDFT as small as possible at near
range i.e. Nyppr =MaxBW,,,, and have it stay the same
with range, even though the burst bandwidth decreases
with increasing range. Thus there is only one IDFT window
length to choose from in the IFFT or the IMFT algorithms.
Secondly, we consider the case where the IDFT is allowed
to be up to four samples longer than the minimum i.e.
MaxBW,,,, < Nippr < MaxBW);,, +4. This allows some
flexibility in choosing a favourable IFFT length from five
different window sizes, at the expense of a small decrease
in SNR.

The burst bandwidth in bins is directly proportional to
Ngpr eqn. 32, so it changes in the same ratio as Nygr. If the
value of BW,,, is bigger because of a bigger Ny it is
easier to find a highly composite number in its neighbour-
hood, thus it is easier to pick an efficient length for the
IFFT. The change in dSNR when a more suitable window
is used for the IDFTs is less than 0.1 dB, thus the SNR
decrease is quite small.

Fig. 12 shows the number of real operations of the
SIFFT algorithm per forward DFT, when it is used to
compress the data of IS1 swath. The algorithms used to
obtain the azimuth compression are the mixed-radix IFFT
and the full- and reduced-IMFT. Fig. 12a shows that the
IMFT algorithms are more efficient through the whole
swath when only the minimum window length can be used.

The IFFT window begins to cover the bandwidth of more
than one target as BW,,;, decreases with range, so there is a
change in the number of targets compressed per IFFT. The
IMFT arithmetic decreases slowly with range while'.the
arithmetic of the IFFT drops by half when the number of

40t

35f
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no. of operations{x10 )

825 830 835 840 845 850 855 860
a range, km

no. of operations{x10 )

0.5

825 830 835 840 845 850 855 860
b range, km
Fig. 12 Arithmetic of SIFFT algorithm when applied to ISI swath
—— IFFT
——— full IMFT
—-—-  reduced IMFT
a Maximum SNR, Nyppp =271, Ngpp = 2048
b 0.1dB SNR loss allowed, Nyppp =275, Nppr =2048
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targets compressed per IFFT doubles from 1 to 2. The
IFFT arithmetic is constant on both sides of the down-step.
There is more than a factor of ten difference between the
arithmetic of IMFT and IFFT, because the window length is
prime (271) in this case.

In Fig. 125 the mixed-radix IFFT arithmetic dramatically
drops when the IFFT window length is a composite number
(275). The arithmetic of the IMFT algorithms did not
change significantly and they are more efficient only in a
part of the swath, where only one target can be fully
compressed in each group. The down-step of the IFFT
arithmetic happens at closer range, because the IFFT
window is larger, so it starts to fully cover two targets
earlier. The reduced-IMFT arithmetic also drops down
when G,,,,, doubles, but this change is not significant
compared to the change in the IFFT arithmetic. The
arithmetic of the IMFT and IFFT algorithms of the other
swaths follows the same pattern as the arithmetic of swath
IS1.

In Figs. 13 and 14, the average millions of operations
(MOPS) are shown for all the ENVISAT swaths when the
azimuth FFT is 2048 and 4096 samples long (the results
are given per forward DFT, each point on the horizontal
axis represents another ENVISAT swath). The trend of the
arithmetic of the full- and reduced-IMFT is similar in all
cases, while the IFFT arithmetic is quite variable depend-
ing on the composition of the window length. When
Nepr=2048 (Fig. 13) the IMFT is more efficient for
most of the swaths even if there is an option to choose a
suitable window length for the IFFT algorithm.
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Fig. 13 Arithmetic of SIFFT when applied to ENVISAT AP burst-mode
—@— IFFT
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a Maximum SNR; IDFT windows to choose from = 15 Nz =2048

b 0.1 dB SNR loss allowed; IDFT windows to choose from = 5; Ngpp = 2048
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Fig. 14 Arithmetic of SIFFT when applied to ENVISAT AP burst mode
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a Max. SNR; IDFT windows to choose from = 1; Nppr = 4096

b 0.1dB SNR loss allowed; IDFT windows to choose from = 5; Nppr == 4096

When Nppp =4096 (Fig. 14) the IMFT is more efficient
than the IFFT if the maximum SNR is to be obtained (Fig.
14a). When there is a possibility to choose a favourable
IFFT length, the IFFT is more efficient for all the swaths
except one. There is a higher possibility of finding a highly
composite number in the neighbourhood of the smallest
window size value, and more groups of good targets can be
extracted, when the azimuth FFT is larger.

7.3.4 Efficiency: From this arithmetic survey one can
see that the IMFT algorithm can improve the computational
efficiency of the SIFFT algorithm when

o the azimuth FFT is relatively small,
e the maximum SNR is required, and
e the IDFT window length is a noncomposite number.

Besides its efficiency, the IMFT has the following advan-
tages when applied to the SIFFT algorithm:

e the IMFT has more consistent computing load as the
burst bandwidth changes, and -

e itis easier to implement the IMFT algorithm for different
burst and Npgr lengths, because the same IMFT algorithm
can be used for the different IDFT window lengths.

8 Conclusions

The momentary matrix transform has been introduced and
it has been shown that when it takes the form of the DFT or
the IDFT the resulting MFT/IMFT have an efficient
recursive computational structure. The spectrum coeffi-
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cients of the MFT/IMFT can be calculated independently
and only one complex multiplication and two complex
additions are needed to update each spectrum component.
This is a factor of log,(NV) improvement over the radix-2
FFT algorithm if all incremental DFT results are needed.
The efficiency of the MFT/IMFT does not rely on the
transform length being a power of two, in contrast to
standard FFT algorithms.

The applicability of the MFT to the SPECAN SAR
processing algorithm has been investigated. Although the
MFT does not improve the computational efficiency of the
SPECAN algorithm, except at the finest resolutions, it has
several advantages over the FFT implementation, notably
in keeping the sample rate constant.

In burst-mode SAR processing, the time-varying spec-
tral properties of the azimuth received data requires that
highly-overlapped inverse DFTs be used at specific loca-
tions in the frequency domain to obtain accurate azimuth
compression. It was shown that the IMFT can be more
efficient than the IFFT when it is applied to the SIFFT
burst-mode data processing algorithm, especially when the
highest possible SNR is desired.
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11 Appendix: SIFFT efficiency calculations

This Appendix provides the detailed arithmetic computa-
tion calculations of the IMFT used in the SIFFT algorithm
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as reported in Section 7.3.3. The number of IFFTs needed
to compress bursts with the highest energy is

N, 1
Myper =2 2ELN, (36)

N, FFT Ggmup

where Nppr and Npgpr are the forward and inverse frans-
form lengths, N, is the number of samples per burst, and
Ggoup 18 the number of correctly compressed targets in
each group (burst) by each IFFT. From eqn. 36 Mypr is
inversely proportional to G,,,,, as, if more good targets are
compressed from each group, fewer IFFTs are needed to
form a contiguous set of output points. Then the number of
operations needed to compress all the targets using the

IFFT algorithm is
OPiprr = Migpr OPy,,, (37

where OP, _  is the number of operations needed for one
N-sample mixed-radix IFFT. If N is power of 2 then
OPy, . =5Nlog, N. As seen in Section 5, in case of the
full-IMFT algorithm, OPpr = M (8 Nyppr + 2) real opera-
tions are needed to analyse an M-point complex data
record. In the case of two-beam burst processing, M =3
BW,,;, so the arithmetic of the full-IMFT algorithm is

OP ey = 3BW,(8Npygpr + 2) i (3%)

During the IDFT extraction in the SIFFT algorithm ("ynly a
portion of the output target space (‘good’ output targets
Gprr) is compressed correctly. Although the number of
the good targets remains the same through the procéssing
of a range cell, their position changes with the position of
the IDFTs. So, a simple reduced-IMFT algorithm cannot be
used for the target extraction. The position of the computed
spectrum coefficients has to change in phase with position
of the “not-compressed” good output samples, an:d the
Doppler-frequency coefficients of the targets which are
already compressed do not have to be computed during the
rest of the processing. The arithmetic of the requlred
reduced-MFT algorithm follows.

At first the reduced-IMFT algorithm has to be apphed
Npyer times to give the first valid compression result, This
requires

OPuyrt s = Nivier8Npger +2) (39)
real operations. When the first IMFT is done Gy targets
are compressed correctly, so in the next IMFT
Nyeducea1 = Nnyrr — Grepp targets have to be compressed.
Then the IMFT window is shifted ¢ times a sample at a
time, till it fully covers the next target in the group (see
target 7 in Fig. 10). Now, G,,,,,, humber of targets can be
extracted correctly, so during tﬁe next shift of ¢ samples,
N educed — Ggroup targets need to be extracted. The calcula-
tion of the spectrum coefficients from the previously
reduced whole output target  cell repeats
(B3BW4, — Nyppr)/q times through the processing region
until all the targets get compressed. It can be shown that
the arithmetic of this procedure is
OP iyier = 23BWyin — Nipgrr)

reduced2
X [4(N1MFT = Giprr)

3BW,, — N,
—2G,FFT($(1-M—1)+I] (40)
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Then

OPprr = OPper

reduced

+ OPppr

reduced reduced2

= Nppr(8Npapr + 2) + 2[3BWy, — Nppgerl
X [4(NIMFT ~ Grrr)

3BW,,, — N,
_ 2G1FFT< bmq IMFT 1) + 1] (41)
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real operations are needed to compress all targets using the
reduced-IMFT algorithm. The arithmetic of the reduced-
IMFT depends on Ggrr and G,,,,,,, thus if more targets get
extracted by an IMFT, less computation is needed. The
implementation of the reduced IMFT is the same as the
full-IMFT algorithm, except that you must recognise which
targets have already been computed by the IMFT.
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